File size: 10,326 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

# This file is modified from https://github.com/feifeibear/long-context-attention
# Implementation refers to USP Paper: https://arxiv.org/abs/2405.07719

import os

import deepspeed.comm as dist
import torch


class Singleton:
    _instance = None

    def __new__(cls, *args, **kwargs):
        if not cls._instance:
            cls._instance = super().__new__(cls)
            cls._instance.__initialized = False
        return cls._instance

    def __init__(self):
        if not self.__initialized:
            self.__initialized = True


class ProcessGroupManager(Singleton):
    """
    sp_degree = sp_ring_degree x sp_ulysses_degree
    """

    def __init__(self, ulysses_degree, ring_degree, dp_degree, use_ulysses_low, ring_type):
        if not hasattr(self, "__initialized"):
            super().__init__()
            self.ulysses_degree = ulysses_degree
            self.ring_type = ring_type
            self.ulysses_seq_len = None

            self.ring_degree = ring_degree
            self.sp_degree = ring_degree * ulysses_degree
            self.dp_degree = dp_degree

            self.rank = dist.get_rank()

            if self.ring_degree == 1:
                # Using Ulysses Sequence Parallelism only
                num_ulysses_pgs = self.dp_degree
                self.ring_pg = None
                self.ring_rank = None

                for i in range(num_ulysses_pgs):
                    ulysses_ranks = list(range(i * self.ulysses_degree, (i + 1) * self.ulysses_degree))
                    group = dist.new_group(ulysses_ranks)
                    if self.rank in ulysses_ranks:
                        self.ulysses_pg = group

                for sp_rank in range(self.sp_degree):
                    dp_ranks = list(range(sp_rank, self.dp_degree * self.sp_degree, self.sp_degree))
                    group = dist.new_group(dp_ranks)
                    if self.rank in dp_ranks:
                        self.dp_pg = group

                self.ulysses_rank = dist.get_rank(self.ulysses_pg)
                self.sp_rank = self.ulysses_rank
                self.dp_rank = dist.get_rank(self.dp_pg)
                self.sp_pg = self.ulysses_pg

                print(f"GPU {torch.cuda.current_device()} Ulysses rank: {self.ulysses_rank} out of {self.sp_degree}")
            else:
                # Using Hybrid Sequence Parallelism
                assert self.ring_degree > 1
                num_ulysses_pgs = self.ring_degree  # world_size // self.ulysses_degree
                num_ring_pgs = self.ulysses_degree  # world_size // self.ring_degree

                # Set up process groups
                if use_ulysses_low:
                    for dp_rank in range(dp_degree):
                        offset = dp_rank * self.sp_degree
                        for i in range(num_ulysses_pgs):
                            ulysses_ranks = list(
                                range(
                                    i * self.ulysses_degree + offset,
                                    (i + 1) * self.ulysses_degree + offset,
                                )
                            )
                            group = dist.new_group(ulysses_ranks)
                            if self.rank in ulysses_ranks:
                                self.ulysses_pg = group

                        for i in range(num_ring_pgs):
                            ring_ranks = list(range(i + offset, self.sp_degree + offset, num_ring_pgs))
                            group = dist.new_group(ring_ranks)
                            if self.rank in ring_ranks:
                                self.ring_pg = group

                else:
                    for dp_rank in range(dp_degree):
                        offset = dp_rank * self.sp_degree
                        for i in range(num_ring_pgs):
                            ring_ranks = list(range(i * self.ring_degree + offset, (i + 1) * self.ring_degree + offset))
                            group = dist.new_group(ring_ranks)
                            if self.rank in ring_ranks:
                                self.ring_pg = group

                        for i in range(num_ulysses_pgs):
                            ulysses_ranks = list(range(i + offset, self.sp_degree + offset, num_ulysses_pgs))
                            group = dist.new_group(ulysses_ranks)
                            if self.rank in ulysses_ranks:
                                self.ulysses_pg = group

                for sp_rank in range(self.sp_degree):
                    dp_ranks = list(range(sp_rank, self.dp_degree * self.sp_degree, self.sp_degree))
                    group = dist.new_group(dp_ranks)
                    if self.rank in dp_ranks:
                        self.dp_pg = group

                for i in range(self.dp_degree):
                    sp_ranks = list(range(i * self.sp_degree, (i + 1) * self.sp_degree))
                    group = dist.new_group(sp_ranks)
                    if self.rank in sp_ranks:
                        self.sp_pg = group

                self.ulysses_rank = dist.get_rank(self.ulysses_pg)
                self.ring_rank = dist.get_rank(self.ring_pg)
                self.dp_rank = dist.get_rank(self.dp_pg)

                if use_ulysses_low:
                    self.sp_rank = self.ulysses_rank + self.ring_rank * self.ulysses_degree
                else:
                    self.sp_rank = self.ring_rank + self.ulysses_rank * self.ring_degree

                print(
                    f"Rank {self.rank}, GPU {torch.cuda.current_device()} Hybrid SP rank: {self.sp_rank} out of {self.sp_degree} (Ulysses: {self.ulysses_rank}/{self.ulysses_degree}, Ring: {self.ring_rank}/{self.ring_degree})"
                )

            print("--------------ProcessGroupManager Initialized---------------------")


PROCESS_GROUP_MANAGER = None


def set_pg_manager(sp_degree, sp_ring_degree=1, use_ulysses_low=True, ring_type=None):
    """
    Set the process group manager for sequence parallelism.
    sp_degree = sp_ring_degree x sp_ulysses_degree
    """

    # first check torch distributed group init and set device accordingly;
    # (DL) TODO: Whether this can be skipped in DeepSpeed.
    if dist.is_initialized():
        if dist.get_rank() == 0:
            print(
                "torch distributed is already initialized, " "skipping initialization ...",
                flush=True,
            )
    else:
        if int(os.environ["RANK"]) == 0:
            print("Initializing Torch distributed.")
        dist.init_distributed(dist_backend="nccl", dist_init_required=True)
        local_world_size = int(os.environ["LOCAL_WORLD_SIZE"])

        torch.cuda.set_device(dist.get_rank() % local_world_size)

    world_size = dist.get_world_size()

    assert sp_degree <= world_size
    assert world_size % sp_degree == 0, f"world_size {world_size} % sp_degree {sp_degree} != 0"

    if sp_ring_degree < 1:
        sp_ring_degree = 1

    sp_ulysses_degree = sp_degree // sp_ring_degree
    assert sp_degree % sp_ring_degree == 0, f"sp_degree {sp_degree} % sp_ring_degree {sp_ring_degree} != 0"

    dp_degree = world_size // sp_degree

    # Init the process group manager
    global PROCESS_GROUP_MANAGER
    PROCESS_GROUP_MANAGER = ProcessGroupManager(
        sp_ulysses_degree, sp_ring_degree, dp_degree, use_ulysses_low, ring_type
    )


def get_pg_manager():
    return PROCESS_GROUP_MANAGER


def get_sequence_parallel_size():
    """Get the size of the sequence parallel group."""
    return PROCESS_GROUP_MANAGER.sp_degree


def get_sequence_parallel_rank():
    """Get the rank of this process in the sequence parallel group the caller rank belongs to."""
    return PROCESS_GROUP_MANAGER.sp_rank


def get_sequence_parallel_pg():
    """Get the overall sequence parallel process group (include Ring and Ulysses)."""
    return PROCESS_GROUP_MANAGER.sp_pg


def get_ulysses_sp_size():
    """Get the size of the Ulysses sequence parallel group."""
    return PROCESS_GROUP_MANAGER.ulysses_degree


def get_ulysses_seq_len():
    """Get the size of the Ulysses sequence parallel group."""
    return PROCESS_GROUP_MANAGER.ulysses_seq_len


def set_ulysses_seq_len(seq_len):
    """Get the size of the Ulysses sequence parallel group."""
    PROCESS_GROUP_MANAGER.ulysses_seq_len = seq_len


def get_ulysses_sp_rank():
    """Get the rank of this process in the Ulysses sequence parallel group the caller rank belongs to."""
    return PROCESS_GROUP_MANAGER.ulysses_rank


def get_ulysses_sp_pg():
    """Get the Ulysses sequence parallel process group."""
    return PROCESS_GROUP_MANAGER.ulysses_pg


def get_ring_sp_size():
    """Get the size of the RingAttn sequence parallel group."""
    return PROCESS_GROUP_MANAGER.ring_degree


def get_ring_sp_rank():
    """Get the rank of this process in the RingAttn sequence parallel group the caller rank belongs to."""
    return PROCESS_GROUP_MANAGER.ring_rank


def get_ring_sp_pg():
    """Get the RingAttn sequence parallel process group."""
    return PROCESS_GROUP_MANAGER.ring_pg


def get_ring_type():
    """Get the RingAttn implementation type."""
    return PROCESS_GROUP_MANAGER.ring_type


def get_data_parallel_size():
    """Get the size of the data parallel group."""
    return PROCESS_GROUP_MANAGER.dp_degree


def get_data_parallel_rank():
    """Get the rank of this process in the data parallel group the caller rank belongs to."""
    return PROCESS_GROUP_MANAGER.dp_rank