Spaces:
Running
on
A100
Running
on
A100
File size: 9,207 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import inspect
import os
from typing import List, Optional, Tuple, Union
import torch
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import pad_input
from transformers.cache_utils import Cache
from transformers.modeling_flash_attention_utils import _upad_input
from transformers.utils import is_flash_attn_greater_or_equal
from llava.model.utils.packing import _get_unpad_data
from llava.train.sequence_parallel.globals import get_ring_sp_pg, get_ring_type, get_ulysses_sp_pg
from llava.train.sequence_parallel.hybrid_attn import HybridAttention
from llava.train.sequence_parallel.ring import ring_flash_attn_varlen_func, zigzag_ring_flash_attn_varlen_func
from llava.train.sequence_parallel.ulysses_attn import UlyssesAttention
def _ulysses_attn_varlen_func(
query_states,
key_states,
value_states,
query_length,
attention_mask=None,
dropout_p=0.0,
softmax_scale=None,
seqlens_in_batch=None,
causal=None,
):
batch_size = query_states.shape[0]
# overwrite query_length with the actual length of the sequence after SP communciation
query_length = attention_mask.shape[1]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=True,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
return attn_output
def _hybrid_attn_varlen_func(
query_states,
key_states,
value_states,
query_length,
attention_mask=None,
dropout_p=0.0,
softmax_scale=None,
seqlens_in_batch=None,
causal=None,
group=None,
):
batch_size = query_states.shape[0]
# overwrite query_length with the actual length of the sequence after SP communciation
query_length = attention_mask.shape[1]
_get_unpad_data.seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seq_lens = cu_seq_lens[0]
ring_type = get_ring_type()
if ring_type == "ring_varlen":
attn_output_unpad = ring_flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seq_lens,
max_seq_lens[0],
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=True,
group=group,
)
elif ring_type == "zigzag_ring_varlen":
attn_output_unpad = zigzag_ring_flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seq_lens,
max_seq_lens[0],
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=True,
group=group,
)
else:
raise ValueError(f"Invalid ring_type: {ring_type}")
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
return attn_output
def _flash_attention_forward(
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: torch.Tensor,
query_length: int,
is_causal: bool,
dropout: float = 0.0,
position_ids: Optional[torch.Tensor] = None,
softmax_scale: Optional[float] = None,
sliding_window: Optional[int] = None,
use_top_left_mask: bool = False,
softcap: Optional[float] = None,
deterministic: bool = None,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`float`):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
use_top_left_mask (`bool`, defaults to `False`):
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
softcap (`float`, *optional*):
Softcap for the attention logits, used e.g. in gemma2.
deterministic (`bool`, *optional*):
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
"""
if not use_top_left_mask:
causal = is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
causal = is_causal and query_length != 1
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
use_sliding_windows = (
"window_size" in list(inspect.signature(flash_attn_func).parameters)
and sliding_window is not None
and key_states.shape[1] > sliding_window
)
flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
if is_flash_attn_greater_or_equal("2.4.1"):
if deterministic is None:
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
flash_kwargs["deterministic"] = deterministic
if softcap is not None:
flash_kwargs["softcap"] = softcap
ring_enabled = get_ring_sp_pg() is not None
if attention_mask is not None:
if ring_enabled:
attn_output = HybridAttention(attention_warper=_hybrid_attn_varlen_func)(
query_states,
key_states,
value_states,
query_length,
attention_mask=attention_mask,
dropout_p=dropout,
softmax_scale=softmax_scale,
seqlens_in_batch=_get_unpad_data.seqlens_in_batch,
)
else:
attn_output = UlyssesAttention(_ulysses_attn_varlen_func, get_ulysses_sp_pg())(
query_states,
key_states,
value_states,
query_length,
attention_mask=attention_mask,
dropout_p=dropout,
softmax_scale=softmax_scale,
seqlens_in_batch=_get_unpad_data.seqlens_in_batch,
)
else:
if ring_enabled:
attn_output = HybridAttention()(
query_states,
key_states,
value_states,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=is_causal,
)
else:
attn_output = UlyssesAttention(flash_attn_func, get_ulysses_sp_pg())(
query_states,
key_states,
value_states,
query_length,
dropout_p=dropout,
softmax_scale=softmax_scale,
)
return attn_output
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
return attention_mask
|