Spaces:
Running
on
A100
Running
on
A100
File size: 4,564 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# Adopted from https://github.com/zhuzilin/ring-flash-attention.
# Implementation refers to Ring Attention Paper: https://arxiv.org/abs/2310.01889
from typing import Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn.functional as F
__all__ = ["update_out_and_lse", "RingComm"]
@torch.jit.script
def _update_out_and_lse(
out: torch.Tensor,
lse: torch.Tensor,
block_out: torch.Tensor,
block_lse: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
block_out = block_out.to(torch.float32)
block_lse = block_lse.transpose(-2, -1).unsqueeze(dim=-1)
out = out - F.sigmoid(block_lse - lse) * (out - block_out)
lse = lse - F.logsigmoid(lse - block_lse)
return out, lse
def update_out_and_lse(
out: Optional[torch.Tensor],
lse: Optional[torch.Tensor],
block_out: torch.Tensor,
block_lse: torch.Tensor,
slice_=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if out is None:
if slice_ is not None:
raise RuntimeError("first update_out_and_lse should not pass slice_ args")
out = block_out.to(torch.float32)
lse = block_lse.transpose(-2, -1).unsqueeze(dim=-1)
elif slice_ is not None:
slice_out, slice_lse = out[slice_], lse[slice_]
slice_out, slice_lse = _update_out_and_lse(slice_out, slice_lse, block_out, block_lse)
out[slice_], lse[slice_] = slice_out, slice_lse
else:
out, lse = _update_out_and_lse(out, lse, block_out, block_lse)
return out, lse
@torch.jit.script
def flatten_varlen_lse(lse, cu_seqlens):
new_lse = []
for i in range(len(cu_seqlens) - 1):
start, end = cu_seqlens[i], cu_seqlens[i + 1]
new_lse.append(lse[i, :, : end - start])
return torch.cat(new_lse, dim=1)
@torch.jit.script
def unflatten_varlen_lse(lse, cu_seqlens, max_seqlen: int):
num_seq = len(cu_seqlens) - 1
num_head = lse.shape[-2]
new_lse = torch.empty((num_seq, max_seqlen, num_head, 1), dtype=torch.float32, device=lse.device)
for i in range(num_seq):
start, end = cu_seqlens[i], cu_seqlens[i + 1]
new_lse[i, : end - start] = lse[start:end]
return new_lse.squeeze(dim=-1).transpose(1, 2).contiguous()
class RingComm:
def __init__(self, process_group: dist.ProcessGroup):
self._process_group = process_group
self._ops = []
self.rank = dist.get_rank(self._process_group)
self.world_size = dist.get_world_size(self._process_group)
self._reqs = None
self.send_rank = (self.rank + 1) % self.world_size
self.recv_rank = (self.rank - 1) % self.world_size
if process_group is not None:
self.send_rank = dist.get_global_rank(self._process_group, self.send_rank)
self.recv_rank = dist.get_global_rank(self._process_group, self.recv_rank)
def send_recv(self, to_send: torch.Tensor, recv_tensor: Optional[torch.Tensor] = None) -> torch.Tensor:
if recv_tensor is None:
res = torch.empty_like(to_send)
else:
res = recv_tensor
send_op = dist.P2POp(dist.isend, to_send, self.send_rank, group=self._process_group)
recv_op = dist.P2POp(dist.irecv, res, self.recv_rank, group=self._process_group)
self._ops.append(send_op)
self._ops.append(recv_op)
return res
def commit(self):
if self._reqs is not None:
raise RuntimeError("commit called twice")
self._reqs = dist.batch_isend_irecv(self._ops)
def wait(self):
if self._reqs is None:
raise RuntimeError("wait called before commit")
for req in self._reqs:
req.wait()
self._reqs = None
self._ops = []
|