File size: 37,166 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import copy
import logging
import math
import os
import warnings
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Sequence

import torch
import transformers
from torch.utils.data import Dataset
from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, LlamaForCausalLM, set_seed
from transformers.modeling_utils import unwrap_model

import llava.data.dataset as dataset
import llava.data.datasets_mixture as datasets_mixture
from llava import conversation as conversation_lib
from llava.constants import IGNORE_INDEX
from llava.data import make_supervised_data_module
from llava.mm_utils import process_image
from llava.model import LlavaLlamaConfig, LlavaLlamaModel
from llava.model.language_model.fp8linearqwen2 import Qwen2ForCausalLM  # We need this line to register AutoConfig
from llava.train.args import DataArguments, ModelArguments, TrainingArguments
from llava.train.callbacks.autoresume_callback import AutoResumeCallback
from llava.train.llava_trainer import LLaVATrainer, VILADPOTrainer
from llava.train.sequence_parallel import set_pg_manager
from llava.train.slurm_utils import TimeoutTerminateCallback
from llava.train.utils import (
    get_checkpoint_path,
    mprint,
    prepare_config_for_training,
    unit_test_rope_scaling,
)
from llava.trl.trainer.utils import DPODataCollatorWithPadding

local_rank = None

os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ['TRANSFORMERS_CACHE'] = '.cache'
os.environ['HF_HOME'] = '.cache'
if "WANDB_PROJECT" not in os.environ:
    os.environ["WANDB_PROJECT"] = "AF3"
    
def get_nb_trainable_parameters(model) -> tuple[int, int]:
    r"""
    Returns the number of trainable parameters and the number of all parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        num_params = param.numel()
        # if using DS Zero 3 and the weights are initialized empty
        if num_params == 0 and hasattr(param, "ds_numel"):
            num_params = param.ds_numel

        # Due to the design of 4bit linear layers from bitsandbytes
        # one needs to multiply the number of parameters by 2 to get
        # the correct number of parameters
        if param.__class__.__name__ == "Params4bit":
            if hasattr(param, "element_size"):
                num_bytes = param.element_size()
            elif not hasattr(param, "quant_storage"):
                num_bytes = 1
            else:
                num_bytes = param.quant_storage.itemsize
            num_params = num_params * 2 * num_bytes

        all_param += num_params
        if param.requires_grad:
            trainable_params += num_params

    return trainable_params, all_param


def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus

    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
    if bias == "none":
        to_return = {k: t for k, t in named_params if "lora_" in k}
    elif bias == "all":
        to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
    elif bias == "lora_only":
        to_return = {}
        maybe_lora_bias = {}
        lora_bias_names = set()
        for k, t in named_params:
            if "lora_" in k:
                to_return[k] = t
                bias_name = k.split("lora_")[0] + "bias"
                lora_bias_names.add(bias_name)
            elif "bias" in k:
                maybe_lora_bias[k] = t
        for k, t in maybe_lora_bias:
            if bias_name in lora_bias_names:
                to_return[bias_name] = t
    else:
        raise NotImplementedError
    to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
    return to_return


def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
    to_return = {k: t for k, t in named_params if "lora_" not in k}
    if require_grad_only:
        to_return = {k: t for k, t in to_return.items() if t.requires_grad}
    to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
    return to_return


def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
    to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
    to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
    return to_return


def find_all_linear_names(model, lora_llm, lora_vt, lora_st, lora_sot):
    cls = torch.nn.Linear
    lora_module_names = set()
    multimodal_keywords = ["mm_projector","speech_mm_projector","sound_mm_projector", "vision_resampler"]
    assert lora_llm or lora_vt, "Not applying LoRA to any of the modules..."

    if not lora_llm:
        multimodal_keywords += ["llm"]
    if not lora_vt:
        multimodal_keywords += ["vision_tower"]
    if not lora_st:
        multimodal_keywords += ["speech_tower"]
    if not lora_sot:
        multimodal_keywords += ["sound_tower"]
    for name, module in model.named_modules():
        if any(mm_keyword in name for mm_keyword in multimodal_keywords):
            continue
        if isinstance(module, cls):
            if not "lm_head" in name:
                lora_module_names.add(name)
            # names = name.split(".")
            # lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    # if "lm_head" in lora_module_names:  # needed for 16-bit
    #     lora_module_names.remove("lm_head")
    return list(lora_module_names)


def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
    """Collects the state dict and dump to disk."""
    if trainer.deepspeed:
        torch.cuda.synchronize()
        trainer.save_model(output_dir, _internal_call=True)
        return

    state_dict = trainer.model.state_dict()
    if trainer.args.should_save:
        cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa


def smart_tokenizer_and_embedding_resize(
    special_tokens_dict: Dict,
    tokenizer: transformers.PreTrainedTokenizer,
    model: transformers.PreTrainedModel,
):
    """Resize tokenizer and embedding.

    Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
    """
    num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
    model.resize_token_embeddings(len(tokenizer))

    if num_new_tokens > 0:
        input_embeddings = model.get_input_embeddings().weight.data
        output_embeddings = model.get_output_embeddings().weight.data

        input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
        output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)

        input_embeddings[-num_new_tokens:] = input_embeddings_avg
        output_embeddings[-num_new_tokens:] = output_embeddings_avg


def make_conv(prompt, answer):
    return [
        {
            "from": "human",
            "value": prompt,
        },
        {
            "from": "gpt",
            "value": answer,
        },
    ]


@dataclass
class DPODataCollator(DPODataCollatorWithPadding):
    tokenizer: Any = None

    def collate(self, batch):
        # first, pad everything to the same length
        # input_ids, labels = tuple([instance[key] for instance in instances]
        #                           for key in ("input_ids", "labels"))
        # input_ids = torch.nn.utils.rnn.pad_sequence(
        #     input_ids,
        #     batch_first=True,
        #     padding_value=self.tokenizer.pad_token_id)
        # labels = torch.nn.utils.rnn.pad_sequence(labels,
        #                                          batch_first=True,
        #                                          padding_value=IGNORE_INDEX)
        # input_ids = input_ids[:, :self.tokenizer.model_max_length]
        # labels = labels[:, :self.tokenizer.model_max_length]
        # batch = dict(
        #     input_ids=input_ids,
        #     labels=labels,
        #     attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
        # )
        padded_batch = {}
        for k in batch[0].keys():
            if k.endswith("_input_ids") or k.endswith("_attention_mask") or k.endswith("_labels"):
                # if "prompt" in k:
                #     to_pad = [torch.LongTensor(ex[k][::-1]) for ex in batch]
                # else:
                to_pad = [torch.LongTensor(ex[k]) for ex in batch]
                if k.endswith("_input_ids"):
                    padding_value = self.pad_token_id
                elif k.endswith("_labels"):
                    padding_value = self.label_pad_token_id
                else:
                    continue
                # elif k.endswith("_attention_mask"):
                #     padding_value = self.padding_value
                # else:
                #     raise ValueError(f"Unexpected key in batch '{k}'")

                padded_batch[k] = torch.nn.utils.rnn.pad_sequence(to_pad, batch_first=True, padding_value=padding_value)
                # for the prompt, flip back so padding is on left side
                # if "prompt" in k:
                #     padded_batch[k] = padded_batch[k].flip(dims=[1])
            else:
                padded_batch[k] = [ex[k] for ex in batch]
        for k in ["chosen_input_ids", "rejected_input_ids"]:
            attn_k = k.replace("input_ids", "attention_mask")
            padded_batch[attn_k] = padded_batch[k].ne(self.pad_token_id)
        return padded_batch

    def tokenize_batch_element(self, prompt: str, chosen: str, rejected: str) -> Dict:
        """Tokenize a single batch element.

        At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation
            in case the prompt + chosen or prompt + rejected responses is/are too long. First
            we truncate the prompt; if we're still too long, we truncate the chosen/rejected.

        We also create the labels for the chosen/rejected responses, which are of length equal to
            the sum of the length of the prompt and the chosen/rejected response, with
            label_pad_token_id  for the prompt tokens.
        """
        # import pdb; pdb.set_trace()
        batch = {}

        chosen_sources = make_conv(prompt, chosen)
        rejected_sources = make_conv(prompt, rejected)
        chosen_data_dict = dataset.preprocess([chosen_sources], self.tokenizer, has_image=True)
        # chosen_data_dict['attention_mask'] = chosen_data_dict["input_ids"].ne(self.tokenizer.pad_token_id)

        rejected_data_dict = dataset.preprocess([rejected_sources], self.tokenizer, has_image=True)
        # rejected_data_dict['attention_mask'] = rejected_data_dict["input_ids"].ne(self.tokenizer.pad_token_id)

        chosen_data_dict = {k: v[0] for k, v in chosen_data_dict.items()}
        rejected_data_dict = {k: v[0] for k, v in rejected_data_dict.items()}

        for k, toks in {
            "chosen": chosen_data_dict,
            "rejected": rejected_data_dict,
        }.items():
            for type_key, tokens in toks.items():
                if type_key == "token_type_ids":
                    continue
                batch[f"{k}_{type_key}"] = tokens
        return batch

    def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
        tokenized_batch = []
        Xs, keys = [], []
        for feature in features:
            prompt = feature["prompt"]
            chosen = feature["chosen"]
            rejected = feature["rejected"]

            batch_element = self.tokenize_batch_element(prompt, chosen, rejected)
            batch_element["images"] = feature["images"]
            tokenized_batch.append(batch_element)

        # return collated batch
        padded_batch = self.collate(tokenized_batch)
        return padded_batch


import json


def load_jsonl(save_path):
    with open(save_path) as f:
        data = [json.loads(line) for line in f.readlines()]
    return data


def load_json(path):
    with open(path) as f:
        data = json.load(f)
    return data


def load_data(data_path):
    if "jsonl" in data_path:
        data_list = load_jsonl(data_path)
    else:
        data_list = load_json(data_path)
    return data_list


class DPODataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(self, data_mixture: str, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments):
        super(Dataset, self).__init__()
        data_path = datasets_mixture.DATASETS_LEGACY[data_mixture].data_path
        list_data_dict = load_data(data_path)
        # if data_args.num_sample is not None:
        #     list_data_dict = list_data_dict[:data_args.num_sample]

        print("Formatting inputs...Skip in lazy mode")
        self.tokenizer = tokenizer
        self.list_data_dict = list_data_dict
        self.data_args = data_args
        self.image_folder = datasets_mixture.DATASETS_LEGACY[data_mixture].image_path

    def __len__(self):
        # return 20
        return len(self.list_data_dict)

    @property
    def lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            img_tokens = 128 if "image" in sample else 0
            length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens)
        return length_list

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        """
        {
            'prompt': 'Is there a snowman wearing a green scarf and hat in the background?',
            'chosen': 'No, there is no snowman wearing a green scarf and hat in the background of the image. The image features a person ...',
            'rejected': 'No, there is no snowman in the background.',
            'image_path': '/mnt/bn/liangkeg/data/ruohongz/dpo_data/dpo_images/LRVInstruction-000000009569.jpg',
            'image_name': 'LRVInstruction-000000009569.jpg'
        }
        """
        # sources = self.list_data_dict[i]
        # if isinstance(i, int):
        #     sources = [sources]
        # assert len(sources) == 1, "Don't know why it is wrapped to a list"  # FIXME
        data_dict = copy.deepcopy(self.list_data_dict[i])  # inplace modification following

        video_file = data_dict["video"] + ".mp4"
        video_folder = self.image_folder
        video_path = os.path.join(video_folder, video_file)
        num_video_frames = self.data_args.num_video_frames if hasattr(self.data_args, "num_video_frames") else 8
        loader_fps = self.data_args.fps if hasattr(self.data_args, "fps") else 0.0

        fps = None
        frame_count = None

        images, frames_loaded = dataset.LazySupervisedDataset._load_video(
            video_path, num_video_frames, loader_fps, self.data_args, fps=fps, frame_count=frame_count
        )

        image_tensor = torch.stack([process_image(image, self.data_args, None) for image in images])
        image_tensor = torch.stack([process_image(image, self.data_args, None) for image in images])

        data_dict["images"] = image_tensor

        prompt = data_dict["prompt"]
        prompt = prompt.replace("<video>", "").strip()
        prompt = "<image>\n" * frames_loaded + prompt
        data_dict["prompt"] = prompt

        return data_dict


def train():
    global local_rank

    parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # FIXME(zhijianl): This should be deprecated when we move to the new scripts.
    if os.getenv("RUN_NAME") is not None:
        training_args.run_name = os.getenv("RUN_NAME")
    else:
        training_args.run_name = training_args.output_dir.split("/")[-1]

    if training_args.use_one_logger:
        try:
            from one_logger_utils.huggingface import TimeEventCallback, hook_trainer_cls
        except ImportError as e:
            logging.warning(
                f"""one_logger_utils is not installed. Please install it to use one_logger.
                            Please install via `pip install --index-url=https://sc-hw-artf.nvidia.com/artifactory/api/pypi/hwinf-mlwfo-pypi/simple --upgrade one-logger-utils
`"""
            )
            raise e
        batch_size = os.environ.get("GLOBAL_TRAIN_BATCH_SIZE", 16)
        app_tag = f"{training_args.run_name}_{training_args.model_max_length}_{batch_size}"
        one_logger_callback_config = {
            "enable_for_current_rank": os.environ.get("RANK") == "0",
            "one_logger_async": True,
            "one_logger_project": "vila",
            "log_every_n_train_iterations": 10,
            "app_tag_run_version": "0.0.0",
            "summary_data_schema_version": "1.0.0",
            "app_run_type": "training",
            "app_tag": app_tag,
            "app_tag_run_name": training_args.run_name,
            "world_size": os.environ.get("WORLD_SIZE", -1),
            "global_batch_size": batch_size,
            "batch_size": batch_size,
            "train_iterations_target": int(data_args.num_video_frames / batch_size),
            "train_samples_target": data_args.num_video_frames,
            "is_train_iterations_enabled": True,
            "is_baseline_run": False,
            "is_test_iterations_enabled": False,
            "is_validation_iterations_enabled": False,
            "is_save_checkpoint_enabled": True,
            "is_log_throughput_enabled": False,
            "micro_batch_size": os.environ.get("PER_DEVICE_TRAIN_BATCH_SIZE", 16),
            "seq_length": training_args.model_max_length,
            "save_checkpoint_strategy": "sync",
        }
        one_logger_callback_utils = TimeEventCallback(one_logger_callback_config)

    local_rank = training_args.local_rank
    compute_dtype = torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)

    bnb_model_from_pretrained_args = {}
    if training_args.bits in [4, 8]:
        from transformers import BitsAndBytesConfig

        bnb_model_from_pretrained_args.update(
            dict(
                device_map={"": training_args.device},
                # load_in_4bit=training_args.bits == 4,
                # load_in_8bit=training_args.bits == 8,
                quantization_config=BitsAndBytesConfig(
                    load_in_4bit=training_args.bits == 4,
                    load_in_8bit=training_args.bits == 8,
                    llm_int8_skip_modules=["lm_head"],
                    llm_int8_threshold=6.0,
                    llm_int8_has_fp16_weight=False,
                    bnb_4bit_compute_dtype=compute_dtype,
                    bnb_4bit_use_double_quant=training_args.double_quant,
                    bnb_4bit_quant_type=training_args.quant_type,  # {'fp4', 'nf4'}
                ),
            )
        )

    set_seed(training_args.seed)

    sp_degree = training_args.seq_parallel_size
    ring_degree = training_args.seq_parallel_ring_size
    if sp_degree > 1:
        set_pg_manager(sp_degree, ring_degree, ring_type=training_args.seq_parallel_ring_type)
        print(f"Sequence parallelism is enabled, SP = {sp_degree}")

    resume_path, continue_training = get_checkpoint_path(training_args.output_dir)

    if not continue_training:
        print(f"Models has been ready under {training_args.output_dir}. Skipp training")
        exit(0)

    if resume_path:
        resume_from_checkpoint = True
        if training_args.lora_enable:
            model_cls = LlavaLlamaModel
            config = LlavaLlamaConfig.from_pretrained(model_args.model_name_or_path, resume=resume_from_checkpoint)
            config.resume_path = model_args.model_name_or_path
        else:
            config = AutoConfig.from_pretrained(resume_path, trust_remote_code=True)
            config.resume_path = resume_path
            model_cls = eval(config.architectures[0])
    else:
        ## first time training
        resume_from_checkpoint = False
        ## llm and default multimodal model
        # if (
        #     model_args.quantize_model in quantize_args_to_model_class.keys()
        # ):  # However, qmem should not used currently becuase I haven't merge the memory reduction version into VILA
        #     from llava.model.language_model.qllava_qllama import QLlavaLlamaModel

        #     model_cls = QLlavaLlamaModel
        # else:
        assert (
            model_args.quantize_model == "false"
        ), f"{model_args.quantize_model} for model_args.quantize_model is not supported"
        model_cls = LlavaLlamaModel
        config = LlavaLlamaConfig.from_pretrained(model_args.model_name_or_path, resume=resume_from_checkpoint)

        if getattr(config, "resume_path", None) is not None:
            config.resume_path = model_args.model_name_or_path

    ## extra configurations
    prepare_config_for_training(config, model_args, training_args, data_args)

    if training_args.use_one_logger:
        one_logger_callback_utils.on_model_init_start()

    # if model_args.quantize_model in quantize_args_to_model_class.keys():
    #     model = model_cls(
    #         config=config,
    #         model_args=model_args,
    #         attn_implementation="flash_attention_2",
    #         model_max_length=training_args.model_max_length,
    #         cache_dir=training_args.cache_dir,
    #         **bnb_model_from_pretrained_args,
    #     )
    # else:
    model = model_cls(
        config=config,
        attn_implementation="flash_attention_2",
        model_max_length=training_args.model_max_length,
        cache_dir=training_args.cache_dir,
        **bnb_model_from_pretrained_args,
    )

    if training_args.use_one_logger:
        one_logger_callback_utils.on_model_init_end()

    if not resume_path or training_args.lora_enable:
        if model_args.mlp_path is not None:
            state_dict = torch.load(model_args.mlp_path, map_location="cpu")
            state_dict_new = {}
            for k, v in state_dict.items():
                if k == "0.weight":
                    state_dict_new["layers.1.weight"] = v
                if k == "0.bias":
                    state_dict_new["layers.1.bias"] = v
                if k == "1.weight":
                    state_dict_new["layers.2.weight"] = v
                if k == "1.bias":
                    state_dict_new["layers.2.bias"] = v
                if k == "3.weight":
                    state_dict_new["layers.4.weight"] = v
                if k == "3.bias":
                    state_dict_new["layers.4.bias"] = v
            model.get_mm_projector().load_state_dict(state_dict_new)

    # This is an empty func.
    # It would be overwritten by unit test script.
    if unit_test_rope_scaling(model, model.llm.config, training_args):
        return

    # Take a look on model architecture.
    mprint(model)

    model.llm.config.use_cache = False

    ## set tunnable parameters
    # logging.warning(
    #     "You are setting tunable parameters for the model. Previous args include 'freeze_backbone' and 'tune_mm_mlp_adapter' are deprecated.\n Notice: default value of tune_xxx is False, which means you would not tune this part."
    # )

    def need_to_modify_do_sample(generation_config):
        if generation_config is None:
            warnings.warn("generation config is None, skip do sample modification")
            return False
        if generation_config.do_sample is False:
            if generation_config.temperature is not None and generation_config.temperature != 1.0:
                return True
            if generation_config.top_p is not None and generation_config.top_p != 1.0:
                return True
        return False

    if need_to_modify_do_sample(model.llm.generation_config):
        model.llm.generation_config.do_sample = True

    ## quantize training @yunhao: be careful here
    if training_args.bits in [4, 8]:
        from peft import prepare_model_for_kbit_training

        model.llm.config.torch_dtype = (
            torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)
        )
        model.llm = prepare_model_for_kbit_training(
            model.llm, use_gradient_checkpointing=training_args.gradient_checkpointing
        )

    if training_args.gradient_checkpointing:
        if hasattr(model.llm, "enable_input_require_grads"):
            model.llm.enable_input_require_grads()
        else:

            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)

            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

    if training_args.lora_enable:
        from peft import LoraConfig, PeftModel, get_peft_model

        lora_config = LoraConfig(
            use_dora=training_args.use_dora,
            r=training_args.lora_r,
            lora_alpha=training_args.lora_alpha,
            target_modules=find_all_linear_names(model, training_args.lora_llm, training_args.lora_vt, training_args.lora_st, training_args.lora_sot),
            lora_dropout=training_args.lora_dropout,
            bias=training_args.lora_bias,
            task_type="CAUSAL_LM",
        )
        if training_args.bits == 16:
            if training_args.bf16:
                model.to(torch.bfloat16)
            if training_args.fp16:
                model.to(torch.float16)
        if resume_from_checkpoint:
            # load non-lora weights
            if os.path.exists(os.path.join(resume_path, "non_lora_trainables.bin")):
                non_lora_trainables = torch.load(
                    os.path.join(resume_path, "non_lora_trainables.bin"),
                    map_location="cpu",
                )
                non_lora_trainables = {
                    (k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()
                }
                if any(k.startswith("model.model.") for k in non_lora_trainables):
                    non_lora_trainables = {
                        (k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()
                    }
                model.load_state_dict(non_lora_trainables, strict=False)

            mprint("Resume from checkpoint...", resume_path)
            model = PeftModel.from_pretrained(model, resume_path, is_trainable=True)
        else:
            mprint("Adding LoRA adapters...")
            model = get_peft_model(model, lora_config)
        mprint(model)
        model.print_trainable_parameters()

    # currently assume fft for mm projector
    if training_args.lora_enable:
        if not training_args.lora_llm:
            model.get_llm().requires_grad_(training_args.tune_language_model)
        
        if model.get_sound_tower():
            if training_args.lora_sot:

                def make_inputs_require_grad(module, input, output):
                    output.requires_grad_(True)

                model.get_sound_tower().sound_tower.get_input_embeddings().register_forward_hook(
                    make_inputs_require_grad
                )
            elif training_args.tune_sound_tower:
                model.get_sound_tower().requires_grad_(training_args.tune_sound_tower)
            model.get_sound_mm_projector().requires_grad_(training_args.tune_sound_mm_projector)
            mprint(f"sound mm projector {training_args.tune_sound_mm_projector}")
            model.print_trainable_parameters()
    else:
        model.get_llm().requires_grad_(training_args.tune_language_model)
        mprint(f"Tunable parameters:\nlanguage model {training_args.tune_language_model}")
        model.get_sound_tower().requires_grad_(training_args.tune_sound_tower)
        model.get_sound_mm_projector().requires_grad_(training_args.tune_sound_mm_projector)
      
        mprint(f"sound tower {training_args.tune_sound_tower}")
        mprint(f"sound mm projector {training_args.tune_sound_mm_projector}")
        trainable_params, all_param = get_nb_trainable_parameters(model)
        print(
            f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.4f}"
        )

        if not any(
            [training_args.tune_language_model, training_args.tune_vision_tower,  training_args.tune_speech_tower, training_args.tune_sound_tower, training_args.tune_mm_projector, training_args.tune_speech_mm_projector, training_args.tune_sound_mm_projector]
        ):
            logging.warning("You are not tuning any part of the model. Please check if this is intended.")

    # @yunhao: tokenizer instantiation is moved into build_llm
    tokenizer = model.tokenizer

    if tokenizer.bos_token is None:
        smart_tokenizer_and_embedding_resize(
            special_tokens_dict=dict(bos_token="[BOS]"),
            tokenizer=tokenizer,
            model=model.llm,
        )

    # @yunhao: may move this block into method "build_llm"
    tokenizer.pad_token = tokenizer.unk_token
    if tokenizer.pad_token is None:
        smart_tokenizer_and_embedding_resize(
            special_tokens_dict=dict(pad_token="[PAD]"),
            tokenizer=tokenizer,
            model=model.llm,
        )
    if model_args.version in conversation_lib.conv_templates:
        conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
    else:
        conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]


    sound_tower = model.get_sound_tower()
    data_args.is_multimodal = True

    if sound_tower is not None:
        model.config.sound_mm_projector_lr = training_args.sound_mm_projector_lr
        model.config.sound_tower_lr = training_args.sound_tower_lr

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
        assert not model_args.mm_use_im_patch_token

        model.config.num_time_tokens = data_args.num_time_tokens = model_args.num_time_tokens
        model.config.time_token_format = data_args.time_token_format = model_args.time_token_format
        if model_args.num_time_tokens > 0:
            time_tokens = [model.config.time_token_format.format(t=t) for t in range(model.config.num_time_tokens)]
            num_new_tokens = tokenizer.add_tokens(time_tokens)
            assert len(time_tokens) == num_new_tokens or num_new_tokens == 0
            model.resize_token_embeddings(len(tokenizer))
            model.config.time_token_ids = tokenizer.convert_tokens_to_ids(time_tokens)
        else:
            model.config.time_token_ids = []
        model.config.soft_ce_std = model_args.soft_ce_std

    ## TODO pay attention to quantize
    if training_args.bits in [4, 8]:
        from peft.tuners.lora import LoraLayer

        for name, module in model.named_modules():
            if isinstance(module, LoraLayer):
                if training_args.bf16:
                    module = module.to(torch.bfloat16)
            if "norm" in name:
                module = module.to(torch.float32)
            if "lm_head" in name or "embed_tokens" in name:
                if hasattr(module, "weight"):
                    if training_args.bf16 and module.weight.dtype == torch.float32:
                        module = module.to(torch.bfloat16)

    data_args.s2_scales = list(map(int, model_args.s2_scales.split(",")))
    data_args.group_by_modality_length = training_args.group_by_modality_length
    data_module = make_supervised_data_module(
        tokenizer=tokenizer,
        data_args=data_args,
        training_args=training_args,
    )

    # Add a training step_end callback to check whether to autosuspend.
    callbacks = [AutoResumeCallback(), TimeoutTerminateCallback()]

    if training_args.dpo:
        ref_model = model_cls(
            config=config,
            attn_implementation="flash_attention_2",
            model_max_length=training_args.model_max_length,
            cache_dir=training_args.cache_dir,
            **bnb_model_from_pretrained_args,
        )

        train_dataset = DPODataset(tokenizer=tokenizer, data_mixture=data_args.data_mixture, data_args=data_args)

        data_collator = DPODataCollator(
            tokenizer=tokenizer,
            label_pad_token_id=IGNORE_INDEX,
            pad_token_id=tokenizer.pad_token_id,
        )
        extra_info = []
        extra_info.append(len(train_dataset))
        training_args.sample_lens = extra_info

        trainer = VILADPOTrainer(
            model=model,
            dpo_alpha=1.0,
            gamma=0,
            ref_model=ref_model,
            tokenizer=tokenizer,
            args=training_args,
            beta=training_args.dpo_beta,
            callbacks=callbacks,
            train_dataset=train_dataset,
            data_collator=data_collator,
        )
    else:
        if training_args.use_one_logger:
            newLLaVATrainer = hook_trainer_cls(LLaVATrainer, one_logger_callback_utils=one_logger_callback_utils)
            trainer = newLLaVATrainer(
                model=model, tokenizer=tokenizer, args=training_args, callbacks=callbacks, **data_module
            )
        else:
            trainer = LLaVATrainer(
                model=model, tokenizer=tokenizer, args=training_args, callbacks=callbacks, **data_module
            )

        if model_args.quantize_model in ["fp8Activation_qwen2", "fp8ActivationResidual_qwen2"]:
            from llava.model.coat.fp8_trainer import CoatFP8Trainer

            trainer._inner_training_loop = CoatFP8Trainer._inner_training_loop.__get__(
                trainer, LLaVATrainer
            )  # GPT told me to do this

    print(
        "length of dataloader:",
        len(trainer.get_train_dataloader()),
        len(trainer.train_dataset),
        flush=True,
    )
    print(
        "[GPU memory] before trainer",
        torch.cuda.memory_allocated() / 1024 / 1024 / 1024,
        flush=True,
    )

    trainer.train(resume_from_checkpoint=resume_from_checkpoint)

    if training_args.debug_e2e:
        exit()

    trainer.save_state()

    model.llm.config.use_cache = True
    model.config.resume_path = model.config._name_or_path = training_args.output_dir
    ## TODO handle lora for new initialization
    if training_args.lora_enable:
        if training_args.use_one_logger:
            one_logger_callback_utils.on_save_checkpoint_start(global_step=trainer.state.global_step)
        state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
        non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
        if training_args.local_rank == 0 or training_args.local_rank == -1:
            model.config.save_pretrained(training_args.output_dir)
            model.save_pretrained(training_args.output_dir, state_dict=state_dict)
            torch.save(
                non_lora_state_dict,
                os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
            )
        if training_args.use_one_logger:
            one_logger_callback_utils.on_save_checkpoint_success(global_step=trainer.state.global_step)
            one_logger_callback_utils.on_save_checkpoint_end(global_step=trainer.state.global_step)
    else:
        safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)

    if training_args.use_one_logger:
        one_logger_callback_utils.on_app_end()


if __name__ == "__main__":
    train()