Spaces:
Running
on
A100
Running
on
A100
File size: 11,662 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import transformers
from transformers.image_transforms import (
ChannelDimension,
Iterable,
Optional,
Union,
get_channel_dimension_axis,
infer_channel_dimension_format,
np,
to_channel_dimension_format,
)
def patched_normalize(
image: np.ndarray,
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.
image = (image - mean) / std
Args:
image (`np.ndarray`):
The image to normalize.
mean (`float` or `Iterable[float]`):
The mean to use for normalization.
std (`float` or `Iterable[float]`):
The standard deviation to use for normalization.
data_format (`ChannelDimension`, *optional*):
The channel dimension format of the output image. If unset, will use the inferred format from the input.
"""
if not isinstance(image, np.ndarray):
raise ValueError("image must be a numpy array")
input_data_format = infer_channel_dimension_format(image)
channel_axis = get_channel_dimension_axis(image)
num_channels = image.shape[channel_axis]
if isinstance(mean, Iterable):
if len(mean) != num_channels:
if num_channels == 1:
num_channels = 3
image = np.concatenate([image, image, image], axis=channel_axis)
else:
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
else:
mean = [mean] * num_channels
mean = np.array(mean, dtype=image.dtype)
if isinstance(std, Iterable):
if len(std) != num_channels:
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
else:
std = [std] * num_channels
std = np.array(std, dtype=image.dtype)
if input_data_format == ChannelDimension.LAST:
image = (image - mean) / std
else:
image = ((image.T - mean) / std).T
image = to_channel_dimension_format(image, data_format) if data_format is not None else image
return image
def patch_normalize_preprocess():
transformers.image_transforms.normalize = patched_normalize
import os
import torch
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import logging
TRAINER_STATE_NAME = "trainer_state.json"
logger = logging.get_logger(__name__)
def _save_checkpoint(self, model, trial, metrics=None):
# In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
# want to save except FullyShardedDDP.
# assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
# Save model checkpoint
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
if self.hp_search_backend is None and trial is None:
self.store_flos()
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
if os.path.exists(output_dir) and len(os.listdir(output_dir)) > 0:
logger.warning(
f"Checkpoint destination directory {output_dir} already exists and is non-empty."
"Saving will proceed but saved results may be invalid."
)
staging_output_dir = output_dir
else:
staging_output_dir = os.path.join(run_dir, f"tmp-{checkpoint_folder}")
self.save_model(staging_output_dir, _internal_call=True)
if not self.args.save_only_model:
# Save optimizer and scheduler
self._save_optimizer_and_scheduler(staging_output_dir)
# Save RNG state
self._save_rng_state(staging_output_dir)
# Determine the new best metric / best model checkpoint
if metrics is not None and self.args.metric_for_best_model is not None:
metric_to_check = self.args.metric_for_best_model
if not metric_to_check.startswith("eval_"):
metric_to_check = f"eval_{metric_to_check}"
metric_value = metrics[metric_to_check]
operator = np.greater if self.args.greater_is_better else np.less
if (
self.state.best_metric is None
or self.state.best_model_checkpoint is None
or operator(metric_value, self.state.best_metric)
):
self.state.best_metric = metric_value
self.state.best_model_checkpoint = staging_output_dir
# Save the Trainer state
if self.args.should_save:
self.state.save_to_json(os.path.join(staging_output_dir, TRAINER_STATE_NAME))
if self.args.push_to_hub:
self._push_from_checkpoint(staging_output_dir)
torch.distributed.barrier()
if staging_output_dir != output_dir:
with self.args.main_process_first(
desc="Renaming model checkpoint folder to true location", local=self.args.save_on_each_node
):
if os.path.exists(staging_output_dir):
os.rename(staging_output_dir, output_dir)
# Maybe delete some older checkpoints.
if self.args.should_save:
# Solely rely on numerical checkpoint id for rotation.
# mtime is not reliable especially on some fuse fs in cloud environments.
self._rotate_checkpoints(use_mtime=False, output_dir=run_dir)
from typing import Any, Dict, Union
from torch import nn
from transformers.training_args import OptimizerNames
from transformers.utils import (
is_sagemaker_mp_enabled,
is_torch_mlu_available,
is_torch_mps_available,
is_torch_musa_available,
is_torch_npu_available,
is_torch_xpu_available,
)
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], num_items_in_batch=None
) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to train.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
Return:
`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
if hasattr(self.optimizer, "train") and callable(self.optimizer.train):
self.optimizer.train()
inputs = self._prepare_inputs(inputs)
if is_sagemaker_mp_enabled():
loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
return loss_mb.reduce_mean().detach().to(self.args.device)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs, num_items_in_batch=num_items_in_batch)
del inputs
if (
self.args.torch_empty_cache_steps is not None
and self.state.global_step % self.args.torch_empty_cache_steps == 0
):
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_mlu_available():
torch.mlu.empty_cache()
elif is_torch_musa_available():
torch.musa.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
elif is_torch_mps_available(min_version="2.0"):
torch.mps.empty_cache()
else:
torch.cuda.empty_cache()
kwargs = {}
# For LOMO optimizers you need to explicitly use the learnign rate
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
kwargs["learning_rate"] = self._get_learning_rate()
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
if num_items_in_batch is not None:
if self.compute_loss_func or self.model_accepts_loss_kwargs:
loss *= self.args.gradient_accumulation_steps
# Average tokens across devices is orthogonal to gradient accumulation
loss *= self.args.world_size
self.accelerator.backward(loss, **kwargs)
return loss.detach() / self.args.gradient_accumulation_steps
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
"""
How the loss is computed by Trainer. By default, all models return the loss in the first element.
Subclass and override for custom behavior.
"""
if (self.label_smoother is not None or self.compute_loss_func is not None) and "labels" in inputs:
labels = inputs.pop("labels")
else:
labels = None
if num_items_in_batch is not None:
num_items_in_batch_tensor = torch.tensor(num_items_in_batch, device=self.args.device)
num_items_in_batch = int(self.accelerator.gather(num_items_in_batch_tensor).sum().cpu())
if self.model_accepts_loss_kwargs:
loss_kwargs = {}
if num_items_in_batch is not None:
loss_kwargs["num_items_in_batch"] = num_items_in_batch
inputs = {**inputs, **loss_kwargs}
outputs = model(**inputs)
# Save past state if it exists
# TODO: this needs to be fixed and made cleaner later.
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
if labels is not None:
unwrapped_model = self.accelerator.unwrap_model(model)
if _is_peft_model(unwrapped_model):
model_name = unwrapped_model.base_model.model._get_name()
else:
model_name = unwrapped_model._get_name()
# User-defined compute_loss function
if self.compute_loss_func is not None:
loss = self.compute_loss_func(outputs, labels, num_items_in_batch=num_items_in_batch)
elif model_name in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
loss = self.label_smoother(outputs, labels, shift_labels=True)
else:
loss = self.label_smoother(outputs, labels)
else:
if isinstance(outputs, dict) and "loss" not in outputs:
raise ValueError(
"The model did not return a loss from the inputs, only the following keys: "
f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
)
# We don't use .loss here since the model may return tuples instead of ModelOutput.
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
return (loss, outputs) if return_outputs else loss
|