File size: 11,662 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import transformers
from transformers.image_transforms import (
    ChannelDimension,
    Iterable,
    Optional,
    Union,
    get_channel_dimension_axis,
    infer_channel_dimension_format,
    np,
    to_channel_dimension_format,
)


def patched_normalize(
    image: np.ndarray,
    mean: Union[float, Iterable[float]],
    std: Union[float, Iterable[float]],
    data_format: Optional[ChannelDimension] = None,
    input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
    """
    Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.

    image = (image - mean) / std

    Args:
        image (`np.ndarray`):
            The image to normalize.
        mean (`float` or `Iterable[float]`):
            The mean to use for normalization.
        std (`float` or `Iterable[float]`):
            The standard deviation to use for normalization.
        data_format (`ChannelDimension`, *optional*):
            The channel dimension format of the output image. If unset, will use the inferred format from the input.
    """
    if not isinstance(image, np.ndarray):
        raise ValueError("image must be a numpy array")

    input_data_format = infer_channel_dimension_format(image)
    channel_axis = get_channel_dimension_axis(image)
    num_channels = image.shape[channel_axis]

    if isinstance(mean, Iterable):
        if len(mean) != num_channels:
            if num_channels == 1:
                num_channels = 3
                image = np.concatenate([image, image, image], axis=channel_axis)
            else:
                raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
    else:
        mean = [mean] * num_channels
    mean = np.array(mean, dtype=image.dtype)

    if isinstance(std, Iterable):
        if len(std) != num_channels:
            raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
    else:
        std = [std] * num_channels
    std = np.array(std, dtype=image.dtype)

    if input_data_format == ChannelDimension.LAST:
        image = (image - mean) / std
    else:
        image = ((image.T - mean) / std).T

    image = to_channel_dimension_format(image, data_format) if data_format is not None else image
    return image


def patch_normalize_preprocess():
    transformers.image_transforms.normalize = patched_normalize


import os

import torch
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import logging

TRAINER_STATE_NAME = "trainer_state.json"
logger = logging.get_logger(__name__)


def _save_checkpoint(self, model, trial, metrics=None):
    # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
    # want to save except FullyShardedDDP.
    # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"

    # Save model checkpoint
    checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"

    if self.hp_search_backend is None and trial is None:
        self.store_flos()

    run_dir = self._get_output_dir(trial=trial)
    output_dir = os.path.join(run_dir, checkpoint_folder)

    if os.path.exists(output_dir) and len(os.listdir(output_dir)) > 0:
        logger.warning(
            f"Checkpoint destination directory {output_dir} already exists and is non-empty."
            "Saving will proceed but saved results may be invalid."
        )
        staging_output_dir = output_dir
    else:
        staging_output_dir = os.path.join(run_dir, f"tmp-{checkpoint_folder}")

    self.save_model(staging_output_dir, _internal_call=True)

    if not self.args.save_only_model:
        # Save optimizer and scheduler
        self._save_optimizer_and_scheduler(staging_output_dir)
        # Save RNG state
        self._save_rng_state(staging_output_dir)

    # Determine the new best metric / best model checkpoint
    if metrics is not None and self.args.metric_for_best_model is not None:
        metric_to_check = self.args.metric_for_best_model
        if not metric_to_check.startswith("eval_"):
            metric_to_check = f"eval_{metric_to_check}"
        metric_value = metrics[metric_to_check]

        operator = np.greater if self.args.greater_is_better else np.less
        if (
            self.state.best_metric is None
            or self.state.best_model_checkpoint is None
            or operator(metric_value, self.state.best_metric)
        ):
            self.state.best_metric = metric_value
            self.state.best_model_checkpoint = staging_output_dir

    # Save the Trainer state
    if self.args.should_save:
        self.state.save_to_json(os.path.join(staging_output_dir, TRAINER_STATE_NAME))

    if self.args.push_to_hub:
        self._push_from_checkpoint(staging_output_dir)

    torch.distributed.barrier()
    if staging_output_dir != output_dir:
        with self.args.main_process_first(
            desc="Renaming model checkpoint folder to true location", local=self.args.save_on_each_node
        ):
            if os.path.exists(staging_output_dir):
                os.rename(staging_output_dir, output_dir)

    # Maybe delete some older checkpoints.
    if self.args.should_save:
        # Solely rely on numerical checkpoint id for rotation.
        # mtime is not reliable especially on some fuse fs in cloud environments.
        self._rotate_checkpoints(use_mtime=False, output_dir=run_dir)


from typing import Any, Dict, Union

from torch import nn
from transformers.training_args import OptimizerNames
from transformers.utils import (
    is_sagemaker_mp_enabled,
    is_torch_mlu_available,
    is_torch_mps_available,
    is_torch_musa_available,
    is_torch_npu_available,
    is_torch_xpu_available,
)


def training_step(
    self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], num_items_in_batch=None
) -> torch.Tensor:
    """
    Perform a training step on a batch of inputs.
    Subclass and override to inject custom behavior.
    Args:
        model (`nn.Module`):
            The model to train.
        inputs (`Dict[str, Union[torch.Tensor, Any]]`):
            The inputs and targets of the model.
            The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
            argument `labels`. Check your model's documentation for all accepted arguments.
    Return:
        `torch.Tensor`: The tensor with training loss on this batch.
    """
    model.train()
    if hasattr(self.optimizer, "train") and callable(self.optimizer.train):
        self.optimizer.train()

    inputs = self._prepare_inputs(inputs)
    if is_sagemaker_mp_enabled():
        loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
        return loss_mb.reduce_mean().detach().to(self.args.device)

    with self.compute_loss_context_manager():
        loss = self.compute_loss(model, inputs, num_items_in_batch=num_items_in_batch)

    del inputs
    if (
        self.args.torch_empty_cache_steps is not None
        and self.state.global_step % self.args.torch_empty_cache_steps == 0
    ):
        if is_torch_xpu_available():
            torch.xpu.empty_cache()
        elif is_torch_mlu_available():
            torch.mlu.empty_cache()
        elif is_torch_musa_available():
            torch.musa.empty_cache()
        elif is_torch_npu_available():
            torch.npu.empty_cache()
        elif is_torch_mps_available(min_version="2.0"):
            torch.mps.empty_cache()
        else:
            torch.cuda.empty_cache()

    kwargs = {}

    # For LOMO optimizers you need to explicitly use the learnign rate
    if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
        kwargs["learning_rate"] = self._get_learning_rate()

    if self.args.n_gpu > 1:
        loss = loss.mean()  # mean() to average on multi-gpu parallel training

    if self.use_apex:
        with amp.scale_loss(loss, self.optimizer) as scaled_loss:
            scaled_loss.backward()
    else:
        if num_items_in_batch is not None:
            if self.compute_loss_func or self.model_accepts_loss_kwargs:
                loss *= self.args.gradient_accumulation_steps
            # Average tokens across devices is orthogonal to gradient accumulation
            loss *= self.args.world_size
        self.accelerator.backward(loss, **kwargs)

    return loss.detach() / self.args.gradient_accumulation_steps


def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
    """
    How the loss is computed by Trainer. By default, all models return the loss in the first element.
    Subclass and override for custom behavior.
    """
    if (self.label_smoother is not None or self.compute_loss_func is not None) and "labels" in inputs:
        labels = inputs.pop("labels")
    else:
        labels = None
    if num_items_in_batch is not None:
        num_items_in_batch_tensor = torch.tensor(num_items_in_batch, device=self.args.device)
        num_items_in_batch = int(self.accelerator.gather(num_items_in_batch_tensor).sum().cpu())
    if self.model_accepts_loss_kwargs:
        loss_kwargs = {}
        if num_items_in_batch is not None:
            loss_kwargs["num_items_in_batch"] = num_items_in_batch
        inputs = {**inputs, **loss_kwargs}
    outputs = model(**inputs)
    # Save past state if it exists
    # TODO: this needs to be fixed and made cleaner later.
    if self.args.past_index >= 0:
        self._past = outputs[self.args.past_index]

    if labels is not None:
        unwrapped_model = self.accelerator.unwrap_model(model)
        if _is_peft_model(unwrapped_model):
            model_name = unwrapped_model.base_model.model._get_name()
        else:
            model_name = unwrapped_model._get_name()
        # User-defined compute_loss function
        if self.compute_loss_func is not None:
            loss = self.compute_loss_func(outputs, labels, num_items_in_batch=num_items_in_batch)
        elif model_name in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
            loss = self.label_smoother(outputs, labels, shift_labels=True)
        else:
            loss = self.label_smoother(outputs, labels)
    else:
        if isinstance(outputs, dict) and "loss" not in outputs:
            raise ValueError(
                "The model did not return a loss from the inputs, only the following keys: "
                f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
            )
        # We don't use .loss here since the model may return tuples instead of ModelOutput.
        loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

    return (loss, outputs) if return_outputs else loss