Spaces:
Running
on
A100
Running
on
A100
File size: 12,331 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import copy
import json
import os
import pathlib
import re
import warnings
from dataclasses import dataclass
import torch
import torch.distributed as dist
from accelerate.hooks import add_hook_to_module
from transformers import PretrainedConfig, PreTrainedModel
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
from llava.train.sequence_parallel.globals import get_pg_manager, get_ulysses_sp_pg
def rprint(*args, **kwargs):
rank = int(os.environ.get("RANK", 0))
world_size = int(os.environ.get("WORLD_SIZE", 1))
if world_size > 1 and dist.is_initialized():
return print(f"[dist-{rank}-of-{world_size}]", *args, **kwargs)
else:
return print(*args, **kwargs)
def mprint(*args, **kwargs):
rank = int(os.environ.get("RANK", 0))
world_size = int(os.environ.get("WORLD_SIZE", 1))
if world_size > 1 and dist.is_initialized():
if rank == 0:
return print(f"[dist-{rank}-of-{world_size}]", *args, **kwargs)
else:
return
else:
return print(*args, **kwargs)
def is_local(model_name_or_path: str) -> bool:
return os.path.isdir(model_name_or_path)
def get_checkpoint_path(output_dir: str, checkpoint_prefix: str = "checkpoint") -> str | None:
output_dir = os.path.abspath(output_dir)
pathlib_dir = pathlib.Path(output_dir)
if list(pathlib_dir.glob("config.json")):
# training has been finished
return output_dir, False
else:
try:
ordering_and_checkpoint_path = []
glob_checkpoints = [
str(x) for x in pathlib.Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)
]
for path in glob_checkpoints:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
return checkpoints_sorted[-1][1], True
except:
return None, True
def prepare_config_for_training(
config: PretrainedConfig, model_args: dataclass, training_args: dataclass, data_args: dataclass
) -> None:
config.chat_template = model_args.chat_template
assert model_args.vision_tower is not None, "requires vision tower"
assert model_args.speech_tower is not None, "requires speech tower"
assert model_args.sound_tower is not None, "requires sound tower"
# set module configurations
if getattr(config, "llm_cfg", None) is None:
config.llm_cfg = model_args.model_name_or_path
if getattr(config, "vision_tower_cfg", None) is None:
config.vision_tower_cfg = model_args.vision_tower
if getattr(config, "speech_tower_cfg", None) is None:
config.speech_tower_cfg = model_args.speech_tower
if getattr(config, "sound_tower_cfg", None) is None:
config.sound_tower_cfg = model_args.sound_tower
if getattr(config, "mm_projector_cfg", None) is None:
config.mm_projector_cfg = model_args.mm_projector
if getattr(config, "speech_mm_projector_cfg", None) is None:
config.speech_mm_projector_cfg = model_args.speech_mm_projector
if getattr(config, "sound_mm_projector_cfg", None) is None:
config.sound_mm_projector_cfg = model_args.sound_mm_projector
# set default dtype
config.model_dtype = torch.bfloat16 if training_args.bf16 else torch.float16
config.model_dtype = config.model_dtype.__str__()
# set tuning modules
config.tune_language_model = training_args.tune_language_model
config.tune_vision_tower = training_args.tune_vision_tower
config.tune_speech_tower = training_args.tune_speech_tower
config.tune_sound_tower = training_args.tune_sound_tower
config.tune_mm_projector = training_args.tune_mm_projector
config.tune_speech_mm_projector = training_args.tune_speech_mm_projector
config.tune_sound_mm_projector = training_args.tune_sound_mm_projector
# set data args
# Get the image_aspect_ratio from the config if is defined there
# (case of resuming from a checkpoint) or from the data_args
# (i.e. from the command line when starting a new training).
if getattr(data_args, "image_aspect_ratio", None) is not None:
if getattr(config, "image_aspect_ratio", None) is None:
config.image_aspect_ratio = data_args.image_aspect_ratio
elif getattr(config, "image_aspect_ratio", None) is not None:
data_args.image_aspect_ratio = config.image_aspect_ratio
else:
raise ValueError("image_aspect_ratio must be set either in data_args or in the pretrained config")
if (
hasattr(training_args, "deepspeed")
and training_args.deepspeed is not None
and "mics" in training_args.deepspeed
):
config.deepspeed = training_args.deepspeed
for key, value in model_args.__dict__.items():
try:
value = json.loads(value)
except:
pass
setattr(config, key, value)
def vision_resolution_elevation(model: PreTrainedModel, config: PretrainedConfig):
vision_tower = model.get_vision_tower()
if vision_tower is not None and "radio" not in vision_tower.__class__.__name__.lower():
vision_tower._maybe_resize_pos_embeds(
model=vision_tower.vision_tower,
image_processor=vision_tower.image_processor,
resolution=getattr(config, "vision_resolution", -1),
interpolate_mode=getattr(config, "interpolate_mode", "linear"),
)
def unit_test_rope_scaling(model: PreTrainedModel, config: PretrainedConfig, training_args: dataclass):
return False
def calculate_loss_weight(labels, ignore_index=-100):
# (Qinghao): Weighted loss based on num_active_elements
# To achieve accurate sequence parallel loss calculation, we need to get
# the real active_elements of each sequence partitions.
# For data parallelism, the loss almost remains the same (also more accurate).
shift_labels = labels[..., 1:].contiguous()
shift_labels = shift_labels.view(-1)
padding_mask = shift_labels.eq(ignore_index) # IGNORE_INDEX = -100 by default
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
# global_active_sum = copy.deepcopy(num_active_elements)
global_active_sum = num_active_elements.detach().clone()
dist.all_reduce(global_active_sum)
loss_weight = num_active_elements / global_active_sum * dist.get_world_size()
return loss_weight
def reshard_hiddne_states_and_labels(hidden_states, labels):
PROCESS_GROUP_MANAGER = get_pg_manager()
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
sp_group = PROCESS_GROUP_MANAGER.ulysses_pg
from llava.constants import IGNORE_INDEX
# Get the seq len on different sp ranks
bs, shard_seqlen = labels.shape
ulysses_seq_len = [torch.zeros(1, dtype=torch.int64, device=labels.device) for _ in range(sp_degree)]
dist.barrier(group=sp_group)
dist.all_gather(ulysses_seq_len, torch.tensor(shard_seqlen, device=labels.device), group=sp_group)
dist.barrier(group=sp_group)
global_seq_len = torch.cat(ulysses_seq_len, dim=0)
# Gather all labels and flaten them
all_labels = [
torch.zeros(bs, seq_len, dtype=labels.dtype, device=labels.device).contiguous() for seq_len in ulysses_seq_len
]
dist.all_gather(all_labels, labels.contiguous(), group=sp_group)
# flatten_global_labels = torch.cat(all_labels, dim=1)[:, 1:].view(-1)
flatten_global_labels = torch.cat(all_labels, dim=1)[:, 1:].contiguous().view(-1)
# Get the label!=IGNORE_INDEX's index
flatten_label_mask = flatten_global_labels.ne(IGNORE_INDEX)
flatten_effective_label_index = flatten_label_mask.nonzero(as_tuple=True)
# padding the effective_label_index if the length is smaller than sp_degree
if flatten_effective_label_index[0].shape[0] < sp_degree:
warnings.warn(
f"The effective label length {flatten_effective_label_index[0].shape[0]} is smaller than sp_degree {sp_degree}, padding the index"
)
repeat_num = sp_degree // flatten_effective_label_index[0].shape[0] + 1
else:
repeat_num = 1
# Reconstruct the labels by selecting from the global labels
effective_global_labels = flatten_global_labels[flatten_effective_label_index]
if repeat_num > 1:
effective_global_labels = effective_global_labels.repeat(repeat_num)
# Global effective seqence length
global_effective_seq_len = effective_global_labels.shape[0]
reshard_size = global_effective_seq_len // sp_degree
# Hyper parameters to reshard the hidden states and labels
if sp_rank == 0:
original_start_id = 0
original_end_id = torch.sum(global_seq_len[: sp_rank + 1]).item()
start_id = 0
end_id = reshard_size * (sp_rank + 1)
elif sp_rank == sp_degree - 1:
original_start_id = torch.sum(global_seq_len[:sp_rank]).item()
original_end_id = torch.sum(global_seq_len[: sp_rank + 1]).item()
start_id = reshard_size * sp_rank
end_id = global_effective_seq_len
else:
original_start_id = torch.sum(global_seq_len[:sp_rank]).item()
original_end_id = torch.sum(global_seq_len[: sp_rank + 1]).item()
start_id = reshard_size * sp_rank
end_id = reshard_size * (sp_rank + 1)
# Get the local labels
effective_local_labels = torch.narrow(effective_global_labels, 0, start_id, end_id - start_id)
# Gather all hidden states and flaten them
# all_hidden_states = [torch.zeros(bs, seq_len, hidden_states.shape[-1], dtype=hidden_states.dtype, device=hidden_states.device, requires_grad=True).contiguous() for seq_len in ulysses_seq_len]
all_hidden_states = torch.zeros(
bs, torch.sum(global_seq_len), hidden_states.shape[-1], dtype=hidden_states.dtype, device=hidden_states.device
).contiguous()
all_hidden_states[:, original_start_id:original_end_id, :] += hidden_states
dist.barrier(group=sp_group)
dist.all_reduce(all_hidden_states, group=sp_group)
dist.barrier(group=sp_group)
flatten_global_hidden_states = all_hidden_states[:, :-1, :].contiguous().view(-1, hidden_states.shape[-1])
# Get the local hidden states
effective_flatten_global_hidden_states = flatten_global_hidden_states[flatten_effective_label_index]
if repeat_num > 1:
effective_flatten_global_hidden_states = effective_flatten_global_hidden_states.repeat(repeat_num, 1)
effective_local_hidden_states = torch.narrow(effective_flatten_global_hidden_states, 0, start_id, end_id - start_id)
return effective_local_hidden_states, effective_local_labels
def sp_loss_rescale(shift_labels, loss):
from llava.constants import IGNORE_INDEX
PROCESS_GROUP_MANAGER = get_pg_manager()
labels_mask = shift_labels.ne(IGNORE_INDEX) # IGNORE_INDEX = -100 by default
num_active_elements = torch.sum(labels_mask)
global_active_sum = copy.deepcopy(num_active_elements)
# dist.barrier(group=get_ulysses_sp_pg())
dist.all_reduce(global_active_sum, group=get_ulysses_sp_pg())
# print(loss.shape, num_active_elements.shape, global_active_sum.shape)
loss = loss * num_active_elements / global_active_sum
dist.all_reduce(loss, group=get_ulysses_sp_pg())
return loss
|