File size: 11,849 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f47451
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

import glob
import os
import tempfile
from collections import defaultdict
from io import BytesIO
from typing import Any, Dict, List, Optional, Union

import cv2
import numpy as np
import PIL
import PIL.Image
import requests
from transformers import PretrainedConfig
from pydub import AudioSegment

from llava.constants import MEDIA_TOKENS
from llava.media import Image, Video, Speech, Sound
from llava.utils import make_list
from llava.utils.logging import logger
import torch
import whisper
import soundfile as sf
from librosa import resample as librosa_resample
from transformers import AutoFeatureExtractor
import math
from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler, UniformClipSampler
import kaldiio
# wav_processor = AutoFeatureExtractor.from_pretrained('pretrained_models/AF-Whisper')
wav_processor = AutoFeatureExtractor.from_pretrained('Qwen/Qwen2-Audio-7B')

__all__ = ["extract_media"]

def int16_to_float32(x):
    return (x / 32767.0).astype(np.float32)


def float32_to_int16(x):
    x = np.clip(x, a_min=-1., a_max=1.)
    return (x * 32767.).astype(np.int16)


def _extract_image(image: Union[Image, PIL.Image.Image]) -> PIL.Image.Image:
    if isinstance(image, Image):
        if image.path.startswith("http://") or image.path.startswith("https://"):
            image = PIL.Image.open(requests.get(image.path, stream=True).raw)
        else:
            image = PIL.Image.open(image.path)
    return image


def _load_video_bytesio(video_bytesio: BytesIO, *, num_frames: int) -> List[PIL.Image.Image]:
    with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
        temp_video.write(video_bytesio.read())
        temp_video_name = temp_video.name
        return _load_video(temp_video_name, num_frames=num_frames)


def _load_video(video_path: str, *, num_frames: int) -> List[PIL.Image.Image]:
    # Load video frames from a directory
    if os.path.isdir(video_path):
        frame_paths = sorted(glob.glob(os.path.join(video_path, "*")))
        indices = np.round(np.linspace(0, len(frame_paths) - 1, num_frames)).astype(int)
        return [PIL.Image.open(frame_paths[index]) for index in indices]

    # Load video frames from a video file
    vidcap = cv2.VideoCapture(video_path)

    # Find the last frame as frame count might not be accurate
    frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    while frame_count > 0:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
        if vidcap.grab():
            break
        frame_count -= 1
    else:
        raise ValueError(f"Video '{video_path}' has no frames.")

    # Extract frames uniformly
    indices = np.round(np.linspace(0, frame_count - 1, num_frames)).astype(int)
    frames = {}
    for index in indices:
        if index in frames:
            continue
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, index)
        success, frame = vidcap.read()
        if not success:
            logger.warning(f"Failed to read frame {index} from video '{video_path}'. Skipped.")
            continue
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frames[index] = PIL.Image.fromarray(frame)
    return [frames[index] for index in indices if index in frames]


def _extract_video(video: Video, config: PretrainedConfig) -> List[PIL.Image.Image]:
    num_frames = config.num_video_frames
    if getattr(config, "fps") != 0:
        logger.warning("Extracting frames from video with specified FPS is not supported yet. Ignored.")
    if isinstance(video.path, BytesIO):
        frames = _load_video_bytesio(video.path, num_frames=num_frames)
    else:
        frames = _load_video(video.path, num_frames=num_frames)
    return frames

def _load_speech(speech_path: str):
    # Load video frames from a directory
    if speech_path is None:
        return None
    speech_outputs = []

    speech = whisper.load_audio(speech_path)
    speech = whisper.pad_or_trim(speech)
    mel = whisper.log_mel_spectrogram(speech)
    speech_outputs.append(mel.unsqueeze(0))
    speech_frames = torch.stack(speech_outputs, dim=0)
    return speech_frames.numpy().tolist()

def _extract_speech(speech: Speech, config: PretrainedConfig):
    frames = _load_speech(speech.path)
    return frames
       
def _get_num_windows(T, sr):

    window_length  = int(30.0 * sr)
    window_overlap = int(0.0 * sr)
    max_num_window = 20
    num_windows = 1
    if T <= window_length:
        num_windows = 1
        full_length = window_length
    elif T >= (max_num_window * window_length - (max_num_window - 1) * window_overlap):
        num_windows = max_num_window
        full_length = (max_num_window * window_length - (max_num_window - 1) * window_overlap)
    else:
        num_windows = 1 + int(np.ceil((T - window_length) / float(window_length - window_overlap)))
        full_length = num_windows * window_length - (num_windows - 1) * window_overlap
    
    return num_windows, full_length

def _load_audio(file_path, target_sr=16000, duration=30.0, start=0.0):
    if file_path.endswith('.mp3'):
        audio = AudioSegment.from_file(file_path)
        if len(audio) > (start + duration) * 1000:
            audio = audio[start * 1000:(start + duration) * 1000]

        if audio.frame_rate != target_sr:
            audio = audio.set_frame_rate(target_sr)

        if audio.channels > 1:
            audio = audio.set_channels(1)
        
        data = np.array(audio.get_array_of_samples())
        if audio.sample_width == 2:
            data = data.astype(np.float32) / np.iinfo(np.int16).max
        elif audio.sample_width == 4:
            data = data.astype(np.float32) / np.iinfo(np.int32).max
        else:
            raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))

    else:
        with sf.SoundFile(file_path) as audio:
            original_sr = audio.samplerate
            channels = audio.channels

            max_frames = int((start + duration) * original_sr)

            audio.seek(int(start * original_sr))
            frames_to_read = min(max_frames, len(audio))
            data = audio.read(frames_to_read)

            if data.max() > 1 or data.min() < -1:
                data = data / max(abs(data.max()), abs(data.min()))
        
        if original_sr != target_sr:
            if channels == 1:
                data = librosa_resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
            else:
                data = librosa_resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
        else:
            if channels != 1:
                data = data.T[0]
    
    if data.min() >= 0:
        data = 2 * data / abs(data.max()) - 1.0
    else:
        data = data / max(abs(data.max()), abs(data.min()))
    
    assert len(data.shape) == 1, data.shape
    return data


def _load_sound_mask(sound_file, sample_rate=16000, window_length=30.0, window_overlap=0.0, max_num_window=20, audio_start = 0.0):
    if sound_file is None:
        return None
    window_length  = int(window_length * sample_rate)
    window_overlap = int(window_overlap * sample_rate)
    max_num_window = int(max_num_window)
    duration = max_num_window * (window_length - window_overlap) + window_overlap

    sound_outputs = []
    audio_feature_masks = []
    audio_embed_masks = []

    try:
        audio_data = _load_audio(sound_file, sample_rate, duration, audio_start) # already cuts to max duration
        T = len(audio_data)
        audio_data = audio_data.reshape(1, -1)
        num_windows, full_length = _get_num_windows(T, sample_rate)

        audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float()
        for i in range(num_windows):
            audio_embed_mask = torch.zeros(750)
            start = i * (window_length - window_overlap)
            audio_data_tensor_this = audio_data_tensor[:, start:start+window_length]
            orig_length = audio_data_tensor_this.shape[1]
            audio_data_tensor_this = wav_processor(audio_data_tensor_this.cpu().numpy(), sampling_rate=sample_rate, return_tensors="pt") #.squeeze(0) text="dummy", audios=audio_data_tensor_this, return_tensors="pt") #
            sound_outputs.append(audio_data_tensor_this["input_features"])
            # calculate the mask for the input melspec to Whisper
            melspec_frames_this_window = int(math.ceil(orig_length / 160))
            feature_attention_mask = torch.zeros(3000, dtype=torch.int32)
            feature_attention_mask[:melspec_frames_this_window] = 1
            audio_feature_masks.append(feature_attention_mask.unsqueeze(0))
            # calculate the mask for the output embedding for use in AF3
            conv_lengths = (melspec_frames_this_window - 1) // 2 + 1
            output_embedding_lengths = (conv_lengths - 2) // 2 + 1
            audio_embed_mask[:output_embedding_lengths] = 1
            audio_embed_masks.append(audio_embed_mask)
    except:
        print("Error loading sound file: ", sound_file)
        sound_outputs.append(torch.zeros(1,128,3000))
        audio_feature_masks.append(torch.zeros(1, 3000, dtype=torch.int32))
        audio_embed_masks.append(torch.zeros(750))
    sound_outputs = torch.stack(sound_outputs, dim=0)
    audio_feature_masks = torch.stack(audio_feature_masks, dim=0)
    audio_embed_masks = torch.stack(audio_embed_masks, dim=0)
    return sound_outputs.numpy().tolist(), audio_feature_masks ,audio_embed_masks


def _extract_sound_mask(sound: Sound, config: PretrainedConfig):
    frames, audio_feature_masks, audio_embed_masks = _load_sound_mask(sound.path)
    return frames, audio_feature_masks, audio_embed_masks

def extract_media(
    messages: List[Dict[str, Any]],
    config: Optional[PretrainedConfig] = None,
    draft: bool = False,
) -> Dict[str, List[Any]]:
    media = defaultdict(list)
    media_meta = defaultdict(list)
    for message in messages:
        text = ""
        print(message)
        for part in make_list(message["value"]):
            if isinstance(part, str):
                for token in MEDIA_TOKENS.values():
                    if token in part:
                        logger.warning(f"Media token '{token}' found in text: '{part}'. Removed.")
                        part = part.replace(token, "").strip()
                text += part
            if isinstance(part, (Image, PIL.Image.Image)):
                if draft:
                    media["image"].append(part)
                else:
                    media["image"].append(_extract_image(part))
                text += MEDIA_TOKENS["image"]
            if isinstance(part, Video):
                if draft:
                    media["video"].append(part)
                else:
                    media["video"].append(_extract_video(part, config))
                text += MEDIA_TOKENS["video"]
            if isinstance(part, Speech):
                if draft:
                    media["speech"].append(part)
                else:
                    media["speech"].append(_extract_speech(part, config))
                text += MEDIA_TOKENS["speech"]
            if isinstance(part, Sound):
                if draft:
                    media["sound"].append(part)
                else:
                    sound, audio_feature_masks,audio_embed_masks = _extract_sound_mask(part, config)
                    media["sound"].append(sound)
                    media_meta["sound_feature_masks"].append(audio_feature_masks)
                    media_meta["sound_embed_masks"].append(audio_embed_masks)
                text += MEDIA_TOKENS["sound"] * len(sound)
   
        message["value"] = text
    return media, media_meta