SreyanG-NVIDIA's picture
Upload 225 files
174ae06 verified
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import torch
# 4 block
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice
from .common import get_configs_io_block
"""Quantize Operator"""
"""Input uses 1 * 16 group quantization"""
"""Output uses 1 * 16 group quantization"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
@triton.autotune(
configs=[] + get_configs_io_block(),
key=[
"N",
],
)
@triton.jit
def _fp8_transpose_kernel(
output_ptr, # output
input_ptr, # input
M,
N, # shape
input_stride_0,
input_stride_1, # input stride
output_stride_0,
output_stride_1, # output stride
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
): # CUDA block size
# Block PID
pid = tl.program_id(0)
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
pid_dim0 = pid // NUM_BLOCK_N
pid_dim1 = pid % NUM_BLOCK_N
# pointers
input_block_ptr = tl.make_block_ptr(
base=input_ptr,
shape=(M, N),
strides=(input_stride_0, input_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
input = tl.load(input_block_ptr)
output = tl.trans(input)
# pointers
output_block_ptr = tl.make_block_ptr(
base=output_ptr,
shape=(N, M),
strides=(output_stride_0, output_stride_1),
offsets=(pid_dim1 * BLOCK_N, pid_dim0 * BLOCK_M),
block_shape=(BLOCK_N, BLOCK_M),
order=(1, 0),
)
tl.store(output_block_ptr, output, boundary_check=(0, 1))
def fp8_transpose(x, transpose_output_2d=False):
# Change batched 3D input to 2D
batched = False
if len(x.shape) == 3:
batched = True
BS = x.shape[0]
x = x.reshape(-1, x.shape[-1])
# defining the input and output tensor
M, N = x.shape
y = torch.empty((N, M), dtype=x.dtype, device=x.device)
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
_fp8_transpose_kernel[grid](
y,
x,
M,
N,
x.stride(0),
x.stride(1),
y.stride(0),
y.stride(1),
)
# Recover 2D to 3D
if batched and not transpose_output_2d:
y = y.reshape(BS, -1, y.shape[-1])
return y