Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
from copy import deepcopy | |
import torch | |
import torch.nn as nn | |
from ._quantize import fp8_quantize | |
from ._quantize_pertensor import fp8_quantize_pertensor | |
class Coat_quantize_bgn(nn.Module): | |
def __init__(self, args=None, layer_type=""): | |
super().__init__() | |
self.args = deepcopy(args) | |
self.fp8type = self.args.fabit | |
self.layer_type = layer_type | |
def forward(self, input): | |
if self.training: | |
return Coat_quantize_bgn_func.apply(input, self.args.group_size, self.fp8type) | |
else: | |
return input, None, None | |
class Coat_quantize_bgn_func(torch.autograd.Function): | |
def forward(ctx, input, group_size, fp8type): | |
""" | |
(Qoutput, Oscale) uses 1 * 16 quantization | |
""" | |
Qoutput, Oscale = fp8_quantize(input, group_size, fp8type) | |
# For autograd | |
Qoutput = Qoutput.view(torch.float8_e4m3fn) | |
ctx.saved = group_size | |
return input, Qoutput, Oscale | |
def backward(ctx, grad_output, Qgrad_output, Gscale): | |
""" | |
(Qgrad_output, Gscale) uses 1 * 16 quantization | |
""" | |
return grad_output, None, None | |
class Coat_quantize_end(nn.Module): | |
def __init__(self, args=None, layer_type=""): | |
super().__init__() | |
self.args = deepcopy(args) | |
self.fp8type = self.args.babit | |
self.layer_type = layer_type | |
def forward(self, input, Qinput, Iscale): | |
if self.training: | |
return Coat_quantize_end_func.apply(input, Qinput, Iscale, self.args.group_size, self.fp8type) | |
else: | |
return input | |
class Coat_quantize_end_func(torch.autograd.Function): | |
def forward(ctx, input, Qinput, Iscale, group_size, fp8type): | |
""" | |
(Qinput, Iscale) uses 1 * 16 quantization | |
""" | |
ctx.saved = group_size, fp8type | |
return input | |
def backward(ctx, grad_output): | |
""" | |
(Qgrad_output, Gscale) uses per-tensor quantization | |
""" | |
group_size, fp8type = ctx.saved | |
Qgrad_output, Gscale, Gscale_g16 = fp8_quantize_pertensor(grad_output, group_size, fp8type, stochastic=False) | |
# For autograd | |
Qgrad_output = Qgrad_output.view(torch.float8_e4m3fn) | |
return grad_output, Qgrad_output, Gscale_g16, None, None | |