SreyanG-NVIDIA's picture
Upload 225 files
174ae06 verified
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
"""
Layer Normalization
====================
In this tutorial, you will write a high-performance layer normalization
kernel that runs faster than the PyTorch implementation.
In doing so, you will learn about:
* Implementing backward pass in Triton.
* Implementing parallel reduction in Triton.
"""
import torch
import triton
import triton.language as tl
from ._division_transpose import fp8_division_transpose
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES
"""RMSNorm Forward + Backward"""
"""Forward: Input uses 1 * 16 group quantization"""
"""Forward: Output uses per-tensor quantization"""
"""Backward: Input uses full-precision/BF16."""
"""Backward: Output uses full-precision/BF16."""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
@triton.heuristics(
{
"BLOCK_SN": lambda args: args["N"] // args["QB"],
"BLOCK_SN2": lambda args: args["N2"] // args["QB"],
}
)
@triton.jit
def _rms_norm_fwd_fused(
X, # pointer to the input
SX, # pointer to the scale of input
Y, # pointer to the output
SY, # pointer to the scale of output
W, # Weight
Rstd, # pointer to the 1/std
stride, # how much to increase the pointer when moving by 1 row
scale_stride, # how much to increase the pointer when moving by 1 row
N: tl.constexpr, # number of columns in X,
N2: tl.constexpr, # number of columns in X,
SN: tl.constexpr,
SN2: tl.constexpr,
QB: tl.constexpr,
eps, # epsilon to avoid division by zero
fp8_max,
SCALE_MIN_THRES: tl.constexpr,
BLOCK_SN: tl.constexpr,
BLOCK_SN2: tl.constexpr,
):
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
Y += row * stride
X += row * stride
SX += row * scale_stride
cols = tl.arange(0, N2)
scale_cols = tl.arange(0, SN2)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
scale_x = tl.load(SX + scale_cols, mask=scale_cols < SN, other=0.0).to(tl.float32)
# Dequantize and swish calculation
scale_x = tl.reshape(scale_x, (BLOCK_SN2, 1))
x = tl.reshape(x, (BLOCK_SN2, QB))
x = x * scale_x
x = tl.reshape(x, N2)
# Compute variance
_var = x * x
var = tl.sum(_var, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
# Write mean / rstd
tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
w = tl.load(W + cols, mask=cols < N, other=0.0)
x_hat = x * rstd
y = x_hat * w
# Scale calculation
abs_y = tl.abs(y)
max_val = tl.max(abs_y) + SCALE_MIN_THRES
scale_output = max_val / fp8_max
tl.store(SY + row, scale_output)
# Write output
tl.store(Y + cols, y, mask=cols < N)
@triton.heuristics(
{
"BLOCK_SN": lambda args: args["N"] // args["QB"],
"BLOCK_SN2": lambda args: args["N2"] // args["QB"],
}
)
@triton.jit
def _rms_norm_bwd_dx_fused(
DX, # pointer to the input gradient
DY, # pointer to the output gradient
DW,
X, # pointer to the input
SX, # pointer to the input
W, # weight
Rstd, # pointer to the 1/std
Lock,
stride, # how much to increase the pointer when moving by 1 row
scale_stride, # how much to increase the pointer when moving by 1 row
N: tl.constexpr, # number of columns in X,
N2: tl.constexpr, # number of columns in X,
SN: tl.constexpr,
SN2: tl.constexpr,
QB: tl.constexpr,
SCALE_MIN_THRES: tl.constexpr,
BLOCK_SN: tl.constexpr,
BLOCK_SN2: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
):
# Map the program id to the elements of X, DX, and DY it should compute.
row = tl.program_id(0)
cols = tl.arange(0, N2)
scale_cols = tl.arange(0, SN2)
mask = cols < N
X += row * stride
DY += row * stride
DX += row * stride
SX += row * scale_stride
# Offset locks and weights/biases gradient pointer for parallel reduction
lock_id = row % GROUP_SIZE_M
Lock += lock_id
Count = Lock + GROUP_SIZE_M
DW = DW + lock_id * N + cols
# Load data to SRAM
x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32)
scale_x = tl.load(SX + scale_cols, mask=scale_cols < SN, other=0.0).to(tl.float32)
scale_x = tl.reshape(scale_x, (BLOCK_SN2, 1))
x = tl.reshape(x, (BLOCK_SN2, QB))
x = x * scale_x
x = tl.reshape(x, N2)
dy = tl.load(DY + cols, mask=mask, other=0.0).to(tl.float32)
# Load weight
w = tl.load(W + cols, mask=cols < N, other=0.0).to(tl.float32)
rstd = tl.load(Rstd + row).to(tl.float32)
# Compute dx
xhat = x * rstd
wdy = w * dy
xhat = tl.where(mask, xhat, 0.0)
wdy = tl.where(mask, wdy, 0.0)
c1 = tl.sum(xhat * wdy, axis=0) / N
dx = (wdy - (xhat * c1)) * rstd # layer norm have c2 term, rmsnorm do not
dx = dx.to(DX.type.element_ty)
# Write dx
tl.store(DX + cols, dx, mask=mask)
# Accumulate partial sums for dw/db
partial_dw = (dy * xhat).to(w.dtype)
while tl.atomic_cas(Lock, 0, 1) == 1:
pass
count = tl.load(Count)
# First store doesn't accumulate
if count == 0:
tl.atomic_xchg(Count, 1)
else:
partial_dw += tl.load(DW, mask=mask)
tl.store(DW, partial_dw, mask=mask)
# Release the lock
tl.atomic_xchg(Lock, 0)
@triton.jit
def _rms_norm_bwd_dwdb(
DW, # pointer to the partial sum of weights gradient
FINAL_DW, # pointer to the weights gradient
M, # GROUP_SIZE_M
N, # number of columns
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
):
# Map the program id to the elements of DW and DB it should compute.
pid = tl.program_id(0)
cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
# Iterate through the rows of DW and DB to sum the partial sums.
for i in range(0, M, BLOCK_SIZE_M):
rows = i + tl.arange(0, BLOCK_SIZE_M)
mask = (rows[:, None] < M) & (cols[None, :] < N)
offs = rows[:, None] * N + cols[None, :]
dw += tl.load(DW + offs, mask=mask, other=0.0)
# Write the final sum to the output.
sum_dw = tl.sum(dw, axis=0)
tl.store(FINAL_DW + cols, sum_dw, mask=cols < N)
def fp8_rmsnorm_forward(x, s_x, w, QB, eps, transpose_output_2d=False):
# Change batched 3D input to 2D
batched = False
if len(x.shape) == 3:
assert len(s_x.shape) == 3
batched = True
BS = x.shape[0]
x = x.reshape(-1, x.shape[-1])
s_x = s_x.reshape(-1, s_x.shape[-1])
# allocate output
M, N = x.shape
_, SN = s_x.shape
y = torch.empty_like(x, dtype=torch.bfloat16)
s_y = torch.empty((M,), dtype=torch.bfloat16, device=x.device)
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
# heuristics for number of warps
num_warps = 8
fp8MaxValue = FP8_MAX_VALUE[x.dtype]
N2 = triton.next_power_of_2(N)
SN2 = N2 // QB
# import os
# if int(os.environ.get("LOCAL_RANK")) == 7:
# print(x.device, x.shape, x.dtype, s_x.shape, s_x.dtype, y.shape, y.dtype, s_y.shape, s_y.dtype, w.shape, w.dtype, rstd.shape, rstd.dtype, x.stride(0), s_x.stride(0), N, N2, SN, SN2, QB, "\n")
# enqueue kernel
_rms_norm_fwd_fused[(M,)]( #
x,
s_x,
y,
s_y,
w,
rstd, #
x.stride(0),
s_x.stride(0),
N,
N2,
SN,
SN2,
QB,
eps,
fp8MaxValue,
SCALE_MIN_THRES=SCALE_MIN_THRES, #
num_warps=num_warps,
num_ctas=1,
)
# reduction
s_y_max = s_y.max()
qy, s_y_max, qy_t = fp8_division_transpose(y, QB, x.dtype, s_y_max)
# Recover 2D to 3D
if batched:
y = y.reshape(BS, -1, y.shape[-1])
qy = qy.reshape(BS, -1, y.shape[-1])
if not transpose_output_2d:
qy_t = qy_t.reshape(BS, -1, y.shape[-1])
return qy, s_y_max, qy_t, (w.clone(), rstd, num_warps)
def fp8_rmsnorm_backward(x, s_x, g, w, v, QB, num_warps):
# Change batched 3D input to 2D
batched = False
if len(x.shape) == 3:
assert len(s_x.shape) == 3
batched = True
BS = x.shape[0]
x = x.reshape(-1, x.shape[-1])
s_x = s_x.reshape(-1, s_x.shape[-1])
g = g.reshape(-1, g.shape[-1])
# enqueue kernel using forward pass heuristics
# also compute partial sums for DW and DB
M, N = g.shape
_, SN = s_x.shape
GROUP_SIZE_M = 128
# heuristics for amount of parallel reduction stream for DW/DB
locks = torch.zeros(2 * GROUP_SIZE_M, dtype=torch.int32, device=w.device)
_dw = torch.zeros((GROUP_SIZE_M, N), dtype=w.dtype, device=w.device)
dw = torch.empty((N,), dtype=w.dtype, device=w.device)
dx = torch.empty_like(g, dtype=torch.bfloat16)
N2 = triton.next_power_of_2(N)
SN2 = triton.next_power_of_2(SN)
_rms_norm_bwd_dx_fused[(M,)]( #
dx,
g,
_dw,
x,
s_x,
w,
v,
locks, #
x.stride(0),
s_x.stride(0),
N,
N2,
SN,
SN2,
QB,
SCALE_MIN_THRES=SCALE_MIN_THRES,
num_warps=num_warps,
GROUP_SIZE_M=GROUP_SIZE_M,
)
if batched:
dx = dx.reshape(BS, -1, dx.shape[-1])
grid = lambda meta: [triton.cdiv(N, meta["BLOCK_SIZE_N"])]
# accumulate partial sums in separate kernel
_rms_norm_bwd_dwdb[grid](_dw, dw, min(GROUP_SIZE_M, M), N, BLOCK_SIZE_M=32, BLOCK_SIZE_N=128, num_ctas=1) # #
return dx, dw