Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import torch | |
# 4 block | |
import triton | |
import triton.language as tl | |
from triton.language.extra.cuda import libdevice | |
from ._division_transpose import fp8_division_transpose | |
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, get_configs_io_block | |
"""GELU Activation Forward""" | |
"""Input uses 1 * 16 group quantization""" | |
"""Output uses 1 * 16 group quantization""" | |
"""The input can be 2D or 3D, but the calculation is performed in 2D""" | |
__all__ = ["fp8_gelu_forward"] | |
def _fp8_gelu_forward_kernel( | |
output_ptr, | |
output_scale_ptr, # output | |
input_ptr, | |
input_scale_ptr, # input | |
M, | |
N, | |
SN, | |
QB: tl.constexpr, | |
fp8_max, # shape | |
input_stride_0, | |
input_stride_1, # input stride | |
s_input_stride_0, | |
s_input_stride_1, # scale of input stride | |
output_stride_0, | |
output_stride_1, # output stride | |
s_output_stride_0, | |
s_output_stride_1, # scale of output stride | |
SCALE_MIN_THRES: tl.constexpr, | |
BLOCK_M: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
BLOCK_SN: tl.constexpr, | |
): # CUDA block size | |
# Block PID | |
pid = tl.program_id(0) | |
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N) | |
pid_dim0 = pid // NUM_BLOCK_N | |
pid_dim1 = pid % NUM_BLOCK_N | |
# pointers | |
input_block_ptr = tl.make_block_ptr( | |
base=input_ptr, | |
shape=(M, N), | |
strides=(input_stride_0, input_stride_1), | |
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N), | |
block_shape=(BLOCK_M, BLOCK_N), | |
order=(1, 0), | |
) | |
# input ptr | |
scale_input_ptr = tl.make_block_ptr( | |
base=input_scale_ptr, | |
shape=(M, SN), | |
strides=(s_input_stride_0, s_input_stride_1), | |
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN), | |
block_shape=(BLOCK_M, BLOCK_SN), | |
order=(1, 0), | |
) | |
input = tl.load(input_block_ptr) | |
scale_input = tl.load(scale_input_ptr) | |
input = input.to(tl.float32) | |
scale_input = scale_input.to(tl.float32) | |
# Dequantize and gelu calculation | |
scale_input = tl.reshape(scale_input, (BLOCK_M, BLOCK_SN, 1)) | |
input = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB)) | |
input = input * scale_input | |
# Actual Calculation of GeLU | |
cdf = (1.0 + tl.math.erf(input / tl.math.sqrt(2.0))) / 2 | |
gelu_output = cdf * input | |
# Quantize Scale calculation | |
abs_output = tl.abs(gelu_output) | |
max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES | |
scale_output = max_val / fp8_max | |
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1)) | |
# Quantize | |
# gelu_output = tl.fdiv(gelu_output, scale_output) | |
gelu_output = gelu_output.to(output_ptr.type.element_ty) | |
scale_output = scale_output.to(output_scale_ptr.type.element_ty) | |
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN)) | |
gelu_output = tl.reshape(gelu_output, (BLOCK_M, BLOCK_N)) | |
# debug | |
# gelu_output = input | |
# scale_output = scale_input | |
# pointers | |
output_block_ptr = tl.make_block_ptr( | |
base=output_ptr, | |
shape=(M, N), | |
strides=(output_stride_0, output_stride_1), | |
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N), | |
block_shape=(BLOCK_M, BLOCK_N), | |
order=(1, 0), | |
) | |
scale_output_ptr = tl.make_block_ptr( | |
base=output_scale_ptr, | |
shape=(M, SN), | |
strides=(s_output_stride_0, s_output_stride_1), | |
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN), | |
block_shape=(BLOCK_M, BLOCK_SN), | |
order=(1, 0), | |
) | |
tl.store(output_block_ptr, gelu_output, boundary_check=(0, 1)) | |
tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1)) | |
def fp8_gelu_forward(x, s_x, QB, transpose_output_2d=False): | |
# Change batched 3D input to 2D | |
batched = False | |
if len(x.shape) == 3: | |
assert len(s_x.shape) == 3 | |
batched = True | |
BS = x.shape[0] | |
x = x.reshape(-1, x.shape[-1]) | |
s_x = s_x.reshape(-1, s_x.shape[-1]) | |
# defining the input and output tensor | |
M, N = x.shape | |
_, SN = s_x.shape # assume the shape of quantization block size is always 1 * G | |
y = torch.empty_like(x, dtype=torch.bfloat16) | |
s_y = torch.empty_like(s_x, dtype=s_x.dtype) | |
fp8MaxValue = FP8_MAX_VALUE[x.dtype] # E4M3 and E5M2 have different max value | |
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) | |
_fp8_gelu_forward_kernel[grid]( | |
y, | |
s_y, | |
x, | |
s_x, | |
M, | |
N, | |
SN, | |
QB, | |
fp8MaxValue, | |
x.stride(0), | |
x.stride(1), | |
s_x.stride(0), | |
s_x.stride(1), | |
y.stride(0), | |
y.stride(1), | |
s_y.stride(0), | |
s_y.stride(1), | |
SCALE_MIN_THRES=SCALE_MIN_THRES, | |
) | |
s_y_max = s_y.max() | |
qy, s_y_max, qy_t = fp8_division_transpose(y, QB, x.dtype, s_y_max) | |
# Recover 2D to 3D | |
if batched: | |
qy = qy.reshape(BS, -1, qy.shape[-1]) | |
s_y = s_y.reshape(BS, -1, s_y.shape[-1]) | |
if not transpose_output_2d: | |
qy_t = qy_t.reshape(BS, -1, qy.shape[-1]) | |
return qy, s_y_max, qy_t | |