Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# This file is modified from https://github.com/haotian-liu/LLaVA/ | |
import inspect | |
import os | |
import os.path as osp | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from transformers import ( | |
AutoConfig, | |
AutoModel, | |
GenerationConfig, | |
LlamaConfig, | |
LlamaForCausalLM, | |
PretrainedConfig, | |
PreTrainedModel, | |
) | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from transformers.modeling_utils import ContextManagers, no_init_weights | |
from ..configuration_llava import LlavaConfig | |
from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel | |
from ..utils import get_model_config, get_model_config_fp8 | |
from .builder import build_llm_and_tokenizer | |
from .llava_llama import LlavaLlamaConfig, LlavaLlamaModel | |
quantize_args_to_model_class = { | |
"fp8Linear_llama": "QLlamaForCausalLM", | |
"fp8LinearAndActivation_llama": "QMemLlamaForCausalLM", | |
"fp8Linear_qwen2": "FP8LinearQwen2ForCausalLM", | |
"fp8Activation_qwen2": "FP8ActivationQwen2ForCausalLM", | |
"fp8ActivationResidual_qwen2": "FP8ActivationResidualQwen2ForCausalLM", | |
} | |
class QLlavaLlamaConfig(LlavaLlamaConfig): | |
model_type = "qllava_qllama" | |
## FIXME we will follow the convention to add a new class for CausalLM in the future | |
class QLlavaLlamaModel(LlavaLlamaModel): | |
config_class = QLlavaLlamaConfig | |
main_input_name = "input_embeds" | |
supports_gradient_checkpointing = True | |
def __init__(self, config: QLlavaLlamaConfig = None, model_args=None, *args, **kwargs) -> None: | |
PreTrainedModel.__init__(self, config) | |
return self.init_vlm(config=config, model_args=model_args, *args, **kwargs) | |
# rewrite to support QLlama | |
def init_vlm(self, config: PreTrainedModel = None, model_args=None, *args, **kwargs): | |
# TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation. | |
if hasattr(self, "llm") or hasattr(self, "vision_tower") or hasattr(self, "mm_projector"): | |
# already initialized, skipped | |
return | |
model_dtype = getattr(config, "model_dtype", "torch.float16") | |
if not hasattr(config, "model_dtype"): | |
warnings.warn("model_dtype not found in config, defaulting to torch.float16.") | |
config.model_dtype = model_dtype | |
if model_args.quantize_model in ["fp8Activation_qwen2", "fp8ActivationResidual_qwen2"]: | |
cfgs = get_model_config_fp8(config) # The first cfg is fp8 | |
else: | |
cfgs = get_model_config(config) | |
if len(cfgs) == 3: | |
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs | |
elif len(cfgs) == 4: | |
llm_cfg, vision_tower_cfg, mm_projector_cfg, fp8_llm_cfg = cfgs | |
kwargs.update({"fp8_llm_cfg": fp8_llm_cfg}) | |
else: | |
raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.") | |
kwargs.update( | |
{ | |
"quantize_model_class": quantize_args_to_model_class[model_args.quantize_model], | |
"model_args": model_args, | |
} | |
) | |
self.llm, self.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs) | |
for name, module in self.llm.named_modules(): | |
module.layer_name = name | |
self.pad_to_multiple_of = model_args.pad_to_multiple_of | |
self.post_config() | |
self.is_loaded = True | |
assert ( | |
self.llm is not None or self.vision_tower is not None or self.mm_projector is not None | |
), "At least one of the components must be instantiated." | |
AutoConfig.register("qllava_qllama", QLlavaLlamaConfig) | |
AutoModel.register(QLlavaLlamaConfig, QLlavaLlamaModel) | |