SreyanG-NVIDIA's picture
Upload 225 files
174ae06 verified
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LLaMA model."""
import math
import os
import time
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_flash_attention_utils import _flash_attention_forward
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaDynamicNTKScalingRotaryEmbedding,
LlamaFlashAttention2,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaLinearScalingRotaryEmbedding,
LlamaMLP,
LlamaModel,
LlamaPreTrainedModel,
LlamaRMSNorm,
LlamaRotaryEmbedding,
LlamaSdpaAttention,
apply_rotary_pos_emb,
repeat_kv,
rotate_half,
)
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..qlinear_te import QLinearTE
try:
import transformer_engine.pytorch as te
except:
pass
from ..quantization import QGELU, QAct_FPin, QAct_FPout, QAdd, QIdentity, QLayerNorm, QLinear, QMul
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "QMemLlamaConfig"
class QMemLlamaConfig(LlamaConfig):
model_type = "qmemllama"
class QLlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6, args=None, layer_type=None):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
self.qargs = args
self.QAct_layernorm_in = QAct_FPout(args, layer_type=layer_type + "_in")
self.QAct_layernorm_out = QAct_FPin(args, layer_type=layer_type + "_out")
def forward(self, hidden_states, s):
hidden_states = self.QAct_layernorm_in(hidden_states, s)
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
hidden_states = self.weight * hidden_states.to(input_dtype)
hidden_states, s = self.QAct_layernorm_out(hidden_states)
return hidden_states, s
ALL_LAYERNORM_LAYERS.append(QLlamaRMSNorm)
class QMemLlamaMLP(LlamaMLP):
def __init__(self, config, layer_idx):
super().__init__(config)
self.layer_idx = layer_idx
self.gate_proj = QLinear(
self.hidden_size, self.intermediate_size, bias=False, args=config, layer_type="mlp_gate"
)
self.up_proj = QLinear(self.hidden_size, self.intermediate_size, bias=False, args=config, layer_type="mlp_up")
self.down_proj = QLinear(
self.intermediate_size, self.hidden_size, bias=False, args=config, layer_type="mlp_down"
)
self.act_fn = ACT2FN[config.hidden_act]
self.QAct_act_sum = QAct_FPout(config, layer_type="mlp_act_sum")
self.QAct_act_gate = QAct_FPin(config, layer_type="mlp_act_gate")
self.QAct_act_up = QAct_FPin(config, layer_type="mlp_act_up")
self.QAct_act_in = QAct_FPout(config, layer_type="mlp_act_in")
self.QAct_act_out = QAct_FPin(config, layer_type="mlp_act_out")
self.QMul_act = QMul(config, layer_type="mul_act")
def forward(self, x, s):
if self.config.pretraining_tp > 1:
raise ValueError("Currently Quantization is not implemented for tensor parallel for simplicity")
slice = self.intermediate_size // self.config.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
down_proj = [
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
]
down_proj = sum(down_proj)
else:
# down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
x = self.QAct_act_sum(x, s)
x_gate, s_gate = self.QAct_act_gate(x)
x_up, s_up = self.QAct_act_up(x)
x_gate, s_gate = self.gate_proj(x_gate, s_gate)
x_gate = self.QAct_act_in(x_gate, s_gate)
x_gate = self.act_fn(x_gate)
x_gate, s_gate = self.QAct_act_out(x_gate)
x_up, s_up = self.up_proj(x_up, s_up)
x, s = self.QMul_act(x_gate, x_up, s_gate, s_up)
down_proj, s = self.down_proj(x, s)
return down_proj, s
class QMemLlamaAttention(LlamaAttention):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: QMemLlamaConfig, layer_idx):
super().__init__(config)
self.layer_idx = layer_idx
self.q_proj = QLinear(
self.hidden_size,
self.num_heads * self.head_dim,
bias=config.attention_bias,
args=config,
layer_type="attn_q",
)
self.k_proj = QLinear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.attention_bias,
args=config,
layer_type="attn_k",
)
self.v_proj = QLinear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.attention_bias,
args=config,
layer_type="attn_v",
)
self.o_proj = QLinear(
self.num_heads * self.head_dim,
self.hidden_size,
bias=config.attention_bias,
args=config,
layer_type="attn_proj",
)
self.QAct_qkv_sum = QAct_FPout(config, layer_type="attn_qkv_sum")
self.QAct_q_in = QAct_FPin(config, layer_type="attn_q_in")
self.QAct_k_in = QAct_FPin(config, layer_type="attn_k_in")
self.QAct_v_in = QAct_FPin(config, layer_type="attn_v_in")
self.QAct_q_out = QAct_FPout(config, layer_type="attn_q_out")
self.QAct_k_out = QAct_FPout(config, layer_type="attn_k_out")
self.QAct_v_out = QAct_FPout(config, layer_type="attn_v_out")
self.QAct_proj_in = QAct_FPin(config, layer_type="attn_proj_in")
class QMemLlamaFlashAttention2(QMemLlamaAttention):
"""
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def forward(
self,
hidden_states: torch.Tensor,
s: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
hidden_states = self.QAct_qkv_sum(hidden_states, s)
q, sq = self.QAct_q_in(hidden_states)
k, sk = self.QAct_k_in(hidden_states)
v, sv = self.QAct_v_in(hidden_states)
query_states, sq = self.q_proj(q, sq)
key_states, sk = self.k_proj(k, sk)
value_states, sv = self.v_proj(v, sv)
query_states = self.QAct_q_out(query_states, sq)
key_states = self.QAct_k_out(key_states, sk)
value_states = self.QAct_v_out(value_states, sv)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = attn_output.to(torch.float32)
attn_output, s = self.QAct_proj_in(attn_output)
attn_output, s = self.o_proj(attn_output, s)
if not output_attentions:
attn_weights = None
return attn_output, s, attn_weights, past_key_value
class QMemLlamaSdpaAttention(QMemLlamaAttention):
"""
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from LlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
s: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
hidden_states = self.QAct_qkv_sum(hidden_states, s)
q, sq = self.QAct_q_in(hidden_states)
k, sk = self.QAct_k_in(hidden_states)
v, sv = self.QAct_v_in(hidden_states)
query_states, sq = self.q_proj(q, sq)
key_states, sk = self.k_proj(k, sk)
value_states, sv = self.v_proj(v, sv)
query_states = self.QAct_q_out(query_states, sq)
key_states = self.QAct_k_out(key_states, sk)
value_states = self.QAct_v_out(value_states, sv)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
# attn_output = attn_output.to(torch.float32)
attn_output, s = self.QAct_proj_in(attn_output)
attn_output, s = self.o_proj(attn_output, s)
return attn_output, s, None, past_key_value
QMemLLAMA_ATTENTION_CLASSES = {
"eager": QMemLlamaAttention,
"flash_attention_2": QMemLlamaFlashAttention2,
"sdpa": QMemLlamaSdpaAttention,
}
class QMemLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: QMemLlamaConfig, layer_idx):
super().__init__(config, layer_idx=layer_idx)
self.hidden_size = config.hidden_size
self.self_attn = QMemLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = QMemLlamaMLP(config, layer_idx)
self.input_layernorm = QLlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps, args=config, layer_type="ln_attn"
)
self.post_attention_layernorm = QLlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps, args=config, layer_type="ln_mlp"
)
self.QAdd_attn = QAdd(config, layer_type="add_attn")
self.QAdd_mlp = QAdd(config, layer_type="add_mlp")
self.QAct_reattnout_fx = QAct_FPin(config, layer_type="re_attn_out_fx")
self.QAct_reattnout_re = QAct_FPin(config, layer_type="re_attn_out_re")
self.QAct_remlpout_fx = QAct_FPin(config, layer_type="re_mlp_out_fx")
self.QAct_remlpout_re = QAct_FPin(config, layer_type="re_mlp_out_re")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual, res = self.QAct_reattnout_re(hidden_states)
hidden_states, s = self.QAct_reattnout_fx(hidden_states)
hidden_states, s = self.input_layernorm(hidden_states, s)
# Self Attention
hidden_states, s, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
s=s,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.QAdd_attn(residual, hidden_states, res, s)
# Fully Connected
residual, res = self.QAct_remlpout_re(hidden_states)
hidden_states, s = self.QAct_remlpout_fx(hidden_states)
hidden_states, s = self.post_attention_layernorm(hidden_states, s)
hidden_states, s = self.mlp(hidden_states, s)
hidden_states = self.QAdd_mlp(residual, hidden_states, res, s)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class QMemLlamaPreTrainedModel(LlamaPreTrainedModel):
config_class = QMemLlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["QMemLlamaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear) or isinstance(module, QLinearTE):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class QMemLlamaModel(QMemLlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
Args:
config: QMemLlamaConfig
"""
def __init__(self, config: QMemLlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[QMemLlamaDecoderLayer(config, layer_idx=layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = LlamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
_update_causal_mask = LlamaModel._update_causal_mask
forward = LlamaModel.forward
class QMemLlamaForCausalLM(QMemLlamaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = QMemLlamaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.forward_step_id = 0
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
forward = LlamaForCausalLM.forward
prepare_inputs_for_generation = LlamaForCausalLM.prepare_inputs_for_generation
class QMemLlamaForSequenceClassification(QMemLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = QMemLlamaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
forward = LlamaForSequenceClassification.forward
AutoConfig.register("qmemllama", QMemLlamaConfig)
AutoModel.register(QMemLlamaConfig, QMemLlamaModel)
AutoModelForCausalLM.register(QMemLlamaConfig, QMemLlamaForCausalLM)