Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# -------------------------------------------------------- | |
# InternVL | |
# Copyright (c) 2023 OpenGVLab | |
# Licensed under The MIT License [see LICENSE for details] | |
# -------------------------------------------------------- | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from einops import rearrange | |
from torch import nn | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging | |
from llava.model.multimodal_encoder.intern.configuration_intern_vit import InternVisionConfig | |
from .flash_attention import FlashAttention | |
has_flash_attn = True | |
logger = logging.get_logger(__name__) | |
""" DropBlock, DropPath | |
PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers. | |
Papers: | |
DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890) | |
Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382) | |
Code: | |
DropBlock impl inspired by two Tensorflow impl that I liked: | |
- https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74 | |
- https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]: | |
"""generate N-D grid in dimension order. | |
The ndgrid function is like meshgrid except that the order of the first two input arguments are switched. | |
That is, the statement | |
[X1,X2,X3] = ndgrid(x1,x2,x3) | |
produces the same result as | |
[X2,X1,X3] = meshgrid(x2,x1,x3) | |
This naming is based on MATLAB, the purpose is to avoid confusion due to torch's change to make | |
torch.meshgrid behaviour move from matching ndgrid ('ij') indexing to numpy meshgrid defaults of ('xy'). | |
""" | |
try: | |
return torch.meshgrid(*tensors, indexing="ij") | |
except TypeError: | |
# old PyTorch < 1.10 will follow this path as it does not have indexing arg, | |
# the old behaviour of meshgrid was 'ij' | |
return torch.meshgrid(*tensors) | |
def drop_block_2d( | |
x, | |
drop_prob: float = 0.1, | |
block_size: int = 7, | |
gamma_scale: float = 1.0, | |
with_noise: bool = False, | |
inplace: bool = False, | |
batchwise: bool = False, | |
): | |
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf | |
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training | |
runs with success, but needs further validation and possibly optimization for lower runtime impact. | |
""" | |
B, C, H, W = x.shape | |
total_size = W * H | |
clipped_block_size = min(block_size, min(W, H)) | |
# seed_drop_rate, the gamma parameter | |
gamma = ( | |
gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((W - block_size + 1) * (H - block_size + 1)) | |
) | |
# Forces the block to be inside the feature map. | |
w_i, h_i = ndgrid(torch.arange(W, device=x.device), torch.arange(H, device=x.device)) | |
valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & ( | |
(h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2) | |
) | |
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) | |
if batchwise: | |
# one mask for whole batch, quite a bit faster | |
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) | |
else: | |
uniform_noise = torch.rand_like(x) | |
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) | |
block_mask = -F.max_pool2d( | |
-block_mask, kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2 # block_size, | |
) | |
if with_noise: | |
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) | |
if inplace: | |
x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) | |
else: | |
x = x * block_mask + normal_noise * (1 - block_mask) | |
else: | |
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype) | |
if inplace: | |
x.mul_(block_mask * normalize_scale) | |
else: | |
x = x * block_mask * normalize_scale | |
return x | |
def drop_block_fast_2d( | |
x: torch.Tensor, | |
drop_prob: float = 0.1, | |
block_size: int = 7, | |
gamma_scale: float = 1.0, | |
with_noise: bool = False, | |
inplace: bool = False, | |
): | |
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf | |
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid | |
block mask at edges. | |
""" | |
B, C, H, W = x.shape | |
total_size = W * H | |
clipped_block_size = min(block_size, min(W, H)) | |
gamma = ( | |
gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((W - block_size + 1) * (H - block_size + 1)) | |
) | |
block_mask = torch.empty_like(x).bernoulli_(gamma) | |
block_mask = F.max_pool2d( | |
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2 | |
) | |
if with_noise: | |
normal_noise = torch.empty_like(x).normal_() | |
if inplace: | |
x.mul_(1.0 - block_mask).add_(normal_noise * block_mask) | |
else: | |
x = x * (1.0 - block_mask) + normal_noise * block_mask | |
else: | |
block_mask = 1 - block_mask | |
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-6)).to(dtype=x.dtype) | |
if inplace: | |
x.mul_(block_mask * normalize_scale) | |
else: | |
x = x * block_mask * normalize_scale | |
return x | |
class DropBlock2d(nn.Module): | |
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf""" | |
def __init__( | |
self, | |
drop_prob: float = 0.1, | |
block_size: int = 7, | |
gamma_scale: float = 1.0, | |
with_noise: bool = False, | |
inplace: bool = False, | |
batchwise: bool = False, | |
fast: bool = True, | |
): | |
super().__init__() | |
self.drop_prob = drop_prob | |
self.gamma_scale = gamma_scale | |
self.block_size = block_size | |
self.with_noise = with_noise | |
self.inplace = inplace | |
self.batchwise = batchwise | |
self.fast = fast # FIXME finish comparisons of fast vs not | |
def forward(self, x): | |
if not self.training or not self.drop_prob: | |
return x | |
if self.fast: | |
return drop_block_fast_2d( | |
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace | |
) | |
else: | |
return drop_block_2d( | |
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise | |
) | |
def drop_path(x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
super().__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
def extra_repr(self): | |
return f"drop_prob={round(self.drop_prob,3):0.3f}" | |
class InternRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
try: | |
from apex.normalization import FusedRMSNorm | |
InternRMSNorm = FusedRMSNorm # noqa | |
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm") | |
except ImportError: | |
# using the normal InternRMSNorm | |
pass | |
except Exception: | |
logger.warning("discovered apex but it failed to load, falling back to InternRMSNorm") | |
pass | |
class InternVisionEmbeddings(nn.Module): | |
def __init__(self, config: InternVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.class_embedding = nn.Parameter( | |
torch.randn(1, 1, self.embed_dim), | |
) | |
self.patch_embedding = nn.Conv2d( | |
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches + 1 | |
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
batch_size = pixel_values.shape[0] | |
target_dtype = self.patch_embedding.weight.dtype | |
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] | |
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) | |
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
embeddings = embeddings + self.position_embedding.to(target_dtype) | |
return embeddings | |
class InternAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: InternVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.use_flash_attn = config.use_flash_attn and has_flash_attn | |
if config.use_flash_attn and not has_flash_attn: | |
print("Warning: Flash Attention is not available, use_flash_attn is set to False.") | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias) | |
self.attn_drop = nn.Dropout(config.attention_dropout) | |
self.proj_drop = nn.Dropout(config.dropout) | |
self.qk_normalization = config.qk_normalization | |
if self.qk_normalization: | |
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | |
if self.use_flash_attn: | |
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout) | |
self.proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def _naive_attn(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
if self.qk_normalization: | |
B_, H_, N_, D_ = q.shape | |
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | |
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | |
attn = (q * self.scale) @ k.transpose(-2, -1) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def _flash_attn(self, x, key_padding_mask=None, need_weights=False): | |
qkv = self.qkv(x) | |
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) | |
if self.qk_normalization: | |
q, k, v = qkv.unbind(2) | |
q = self.q_norm(q.flatten(-2, -1)).view(q.shape) | |
k = self.k_norm(k.flatten(-2, -1)).view(k.shape) | |
qkv = torch.stack([q, k, v], dim=2) | |
context, _ = self.inner_attn(qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False) | |
outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) | |
outs = self.proj_drop(outs) | |
return outs | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states) | |
return x | |
class InternMLP(nn.Module): | |
def __init__(self, config: InternVisionConfig): | |
super().__init__() | |
self.config = config | |
self.act = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class InternVisionEncoderLayer(nn.Module): | |
def __init__(self, config: InternVisionConfig, drop_path_rate: float): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.attn = InternAttention(config) | |
self.mlp = InternMLP(config) | |
self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) | |
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) | |
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() | |
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
""" | |
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1) | |
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2) | |
return hidden_states | |
class InternVisionEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`InternEncoderLayer`]. | |
Args: | |
config (`InternConfig`): | |
The corresponding vision configuration for the `InternEncoder`. | |
""" | |
def __init__(self, config: InternVisionConfig): | |
super().__init__() | |
self.config = config | |
# stochastic depth decay rule | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] | |
self.layers = nn.ModuleList( | |
[InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)] | |
) | |
self.gradient_checkpointing = True | |
def forward( | |
self, | |
inputs_embeds, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Embedded representation of the inputs. Should be float, not int tokens. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = torch.utils.checkpoint.checkpoint(encoder_layer, hidden_states) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
) | |
hidden_states = layer_outputs | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states] if v is not None) | |
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states) | |
class InternVisionModel(PreTrainedModel): | |
main_input_name = "pixel_values" | |
config_class = InternVisionConfig | |
_no_split_modules = ["InternVisionEncoderLayer"] | |
def __init__(self, config: InternVisionConfig): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = InternVisionEmbeddings(config) | |
self.encoder = InternVisionEncoder(config) | |
def resize_pos_embeddings(self, old_size, new_size, patch_size): | |
pos_emb = self.embeddings.position_embedding | |
_, num_positions, embed_dim = pos_emb.shape | |
cls_emb = pos_emb[:, :1, :] | |
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2) | |
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode="bicubic", align_corners=False) | |
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1) | |
pos_emb = torch.cat([cls_emb, pos_emb], dim=1) | |
self.embeddings.position_embedding = nn.Parameter(pos_emb) | |
logger.info(f"Resized position embeddings from {old_size} to {new_size}") | |
def get_input_embeddings(self): | |
return self.embeddings | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
pixel_embeds: Optional[torch.FloatTensor] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None and pixel_embeds is None: | |
raise ValueError("You have to specify pixel_values or pixel_embeds") | |
if pixel_embeds is not None: | |
hidden_states = pixel_embeds | |
else: | |
if len(pixel_values.shape) == 4: | |
hidden_states = self.embeddings(pixel_values) | |
else: | |
raise ValueError(f"wrong pixel_values size: {pixel_values.shape}") | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs.last_hidden_state | |
pooled_output = last_hidden_state[:, 0, :] | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |