Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import torch | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoConfig, AutoModel | |
from transformers.image_processing_utils import BaseImageProcessor | |
from llava.model.multimodal_encoder.intern.configuration_intern_vit import InternVisionConfig | |
from llava.model.multimodal_encoder.intern.modeling_intern_vit import InternVisionModel | |
from llava.model.multimodal_encoder.vision_encoder import VisionTower, VisionTowerS2 | |
def build_transform(input_size): | |
transform = T.Compose( | |
[ | |
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), | |
] | |
) | |
return transform | |
class InternVisionPreprocessor(BaseImageProcessor): | |
def __init__(self, resize_size=448): | |
super().__init__() | |
self.resize_size = resize_size | |
def size(self): | |
return {"height": self.resize_size, "width": self.resize_size} | |
def preprocess(self, image, return_tensors): | |
transform = build_transform(self.resize_size) | |
if isinstance(image, list): | |
image_tensor = [transform(img) for img in image] | |
return {"pixel_values": image_tensor} | |
else: | |
image_tensor = transform(image) | |
return {"pixel_values": [image_tensor]} | |
class InternVisionTower(VisionTower): | |
def __init__(self, vision_tower, config, drop_path_rate=0.0): | |
super().__init__(vision_tower, config) | |
self._drop_path_rate = drop_path_rate | |
self.image_processor = InternVisionPreprocessor() | |
vision_config = InternVisionConfig.from_pretrained(vision_tower) | |
vision_config.drop_path_rate = self._drop_path_rate | |
self.vision_tower = InternVisionModel.from_pretrained( | |
vision_tower, torch_dtype=eval(config.model_dtype), config=vision_config | |
) | |
self.is_loaded = True | |
class InternVisionTowerS2(VisionTowerS2): | |
def __init__(self, vision_tower, config, drop_path_rate=0.0): | |
super().__init__(vision_tower, config) | |
self._drop_path_rate = drop_path_rate | |
self.image_processor = InternVisionPreprocessor(resize_size=self.scales[-1]) | |
vision_config = InternVisionConfig.from_pretrained(vision_tower) | |
vision_config.drop_path_rate = self._drop_path_rate | |
self.vision_tower = InternVisionModel.from_pretrained( | |
vision_tower, torch_dtype=eval(config.model_dtype), config=vision_config | |
) | |
self.is_loaded = True | |
AutoConfig.register("intern_vit_6b", InternVisionConfig) | |
AutoModel.register(InternVisionConfig, InternVisionModel) | |