Spaces:
Running
on
A100
Running
on
A100
# coding=utf-8 | |
# Copyright 2024 the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Qwen2Audio model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, EncoderDecoderCache, StaticCache | |
from transformers.generation import GenerationMixin | |
from transformers.modeling_outputs import BaseModelOutput, ModelOutput | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.models.auto import AutoModel, AutoModelForCausalLM | |
from transformers.models.qwen2_audio.configuration_qwen2_audio import Qwen2AudioConfig, Qwen2AudioEncoderConfig | |
if is_flash_attn_2_available(): | |
from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "Qwen2AudioConfig" | |
class Qwen2AudioCausalLMOutputWithPast(ModelOutput): | |
""" | |
Base class for Qwen2Audio causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) | |
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
attention_mask (`torch.FloatTensor`, *optional*): | |
Attentions mask, used to update attention mask and position_ids. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
attention_mask: Optional[torch.FloatTensor] = None | |
# Copied from transformers.models.whisper.modeling_whisper.WhisperAttention with Whisper->Qwen2Audio | |
class Qwen2AudioAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
is_causal: bool = False, | |
layer_idx: Optional[int] = None, | |
config: Optional[Qwen2AudioConfig] = None, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
self.config = config | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.is_causal = is_causal | |
if layer_idx is None and is_decoder: | |
logger.warning_once( | |
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " | |
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.layer_idx = layer_idx | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
# Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape(self.v_proj(current_states), -1, bsz) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_probs, value_states) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.whisper.modeling_whisper.WhisperFlashAttention2 with Whisper->Qwen2Audio | |
class Qwen2AudioFlashAttention2(Qwen2AudioAttention): | |
""" | |
Qwen2Audio flash attention module. This module inherits from `Qwen2AudioAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if isinstance(past_key_value, StaticCache): | |
raise ValueError( | |
"The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. " | |
"Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers" | |
) | |
# Qwen2AudioFlashAttention2 attention does not support output_attentions | |
if output_attentions: | |
raise ValueError("Qwen2AudioFlashAttention2 attention does not support output_attentions") | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim)) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape(self.v_proj(current_states), -1, bsz) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim] | |
# We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view. | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
causal_mask = attention_mask | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, : key_states.shape[-2]] | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = _flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
causal_mask, | |
tgt_len, | |
dropout=self.dropout if self.training else 0.0, | |
is_causal=self.is_causal, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
) | |
attn_output = attn_output.reshape(bsz, tgt_len, -1) | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.whisper.modeling_whisper.WhisperSdpaAttention with Whisper->Qwen2Audio | |
class Qwen2AudioSdpaAttention(Qwen2AudioAttention): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
if output_attentions or layer_head_mask is not None: | |
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"Qwen2AudioModel is using Qwen2AudioSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" | |
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states, | |
key_value_states=key_value_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
) | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape(self.v_proj(current_states), -1, bsz) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
causal_mask = attention_mask | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. | |
is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False | |
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, | |
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, None, past_key_value | |
QWEN2AUDIO_ATTENTION_CLASSES = { | |
"eager": Qwen2AudioAttention, | |
"flash_attention_2": Qwen2AudioFlashAttention2, | |
"sdpa": Qwen2AudioSdpaAttention, | |
} | |
# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer with Whisper->Qwen2Audio, WHISPER->QWEN2AUDIO | |
class Qwen2AudioEncoderLayer(nn.Module): | |
def __init__(self, config: Qwen2AudioConfig): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = QWEN2AUDIO_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=self.embed_dim, | |
num_heads=config.encoder_attention_heads, | |
dropout=config.attention_dropout, | |
config=config, | |
) | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
layer_head_mask: torch.Tensor, | |
output_attentions: bool = False, | |
) -> torch.Tensor: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
hidden_states, attn_weights, _ = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
if hidden_states.dtype == torch.float16 and ( | |
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
QWEN2AUDIO_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Qwen2AudioConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class Qwen2AudioPreTrainedModel(PreTrainedModel): | |
config_class = Qwen2AudioConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Qwen2AudioAttention"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
def _init_weights(self, module): | |
# important: this ported version of Qwen2Audio isn't meant for training from scratch - only | |
# inference and fine-tuning - so the proper init weights code has been removed | |
std = self.config.init_std if hasattr(self.config, "init_std") else self.config.audio_config.init_std | |
if isinstance(module, (nn.Linear, nn.Conv1d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
QWEN2AUDIOENCODER_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Qwen2AudioEncoderConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoder with Whisper->Qwen2Audio | |
class AFWhisperEncoder(Qwen2AudioPreTrainedModel): | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
[`Qwen2AudioEncoderLayer`]. | |
Args: | |
config: Qwen2AudioEncoderConfig | |
""" | |
# Ignore copy | |
config_class = Qwen2AudioEncoderConfig | |
main_input_name = "input_features" | |
_no_split_modules = ["Qwen2AudioEncoderLayer"] | |
def __init__(self, config: Qwen2AudioEncoderConfig): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.encoder_layerdrop | |
embed_dim = config.d_model | |
self.num_mel_bins = config.num_mel_bins | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_source_positions | |
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) | |
self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) | |
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) | |
self.embed_positions.requires_grad_(False) | |
self.layers = nn.ModuleList([Qwen2AudioEncoderLayer(config) for _ in range(config.encoder_layers)]) | |
self.layer_norm = nn.LayerNorm(config.d_model) | |
# Ignore copy | |
self.avg_pooler = nn.AvgPool1d(2, stride=2) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def _freeze_parameters(self): | |
for param in self.parameters(): | |
param.requires_grad = False | |
self._requires_grad = False | |
def get_input_embeddings(self) -> nn.Module: | |
return self.conv1 | |
def set_input_embeddings(self, value: nn.Module): | |
self.conv1 = value | |
def forward( | |
self, | |
input_features, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
Args: | |
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be | |
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a | |
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into | |
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding | |
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
attention_mask (`torch.Tensor`)`, *optional*): | |
Qwen2Audio does not support masking of the `input_features`, this argument is preserved for compatibility, | |
but it is not used. By default the silence in the input log mel spectrogram are ignored. | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0] | |
if input_features.shape[-1] != expected_seq_length: | |
raise ValueError( | |
f"Qwen2Audio expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}." | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Ignore copy | |
input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device) | |
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) | |
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) | |
inputs_embeds = inputs_embeds.permute(0, 2, 1) | |
embed_pos = self.embed_positions.weight | |
hidden_states = inputs_embeds + embed_pos | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
assert head_mask.size()[0] == ( | |
len(self.layers) | |
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
to_drop = False | |
if self.training: | |
dropout_probability = torch.rand([]) | |
if dropout_probability < self.layerdrop: # skip the layer | |
to_drop = True | |
# Ignore copy | |
if to_drop: | |
layer_outputs = (None, None) | |
else: | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
(head_mask[idx] if head_mask is not None else None), | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
# Ignore copy | |
hidden_states = hidden_states.permute(0, 2, 1) | |
hidden_states = self.avg_pooler(hidden_states) | |
hidden_states = hidden_states.permute(0, 2, 1) | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
# Ignore copy | |
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): | |
""" | |
Computes the output length of the convolutional layers and the output length of the audio encoder | |
""" | |
input_lengths = (input_lengths - 1) // 2 + 1 | |
output_lengths = (input_lengths - 2) // 2 + 1 | |
return input_lengths, output_lengths | |
class Qwen2AudioMultiModalProjector(nn.Module): | |
def __init__(self, config: Qwen2AudioConfig): | |
super().__init__() | |
self.linear = nn.Linear(config.audio_config.d_model, config.text_config.hidden_size, bias=True) | |
def forward(self, audio_features): | |
hidden_states = self.linear(audio_features) | |
return hidden_states | |
QWEN2AUDIO_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`): | |
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a | |
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
feature_attention_mask (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`): | |
Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Qwen2AudioForConditionalGeneration(Qwen2AudioPreTrainedModel, GenerationMixin): | |
def __init__(self, config: Qwen2AudioConfig): | |
super().__init__(config) | |
self.audio_tower = AutoModel.from_config(config.audio_config) | |
self.multi_modal_projector = Qwen2AudioMultiModalProjector(config) | |
self.vocab_size = config.text_config.vocab_size | |
self.language_model = AutoModelForCausalLM.from_config(config.text_config) | |
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 | |
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides | |
self.post_init() | |
def padding_side(self): | |
return self._padding_side | |
def padding_side(self, padding_side: str): | |
if padding_side not in ["left", "right"]: | |
raise ValueError(f"{padding_side} is not `left` or `right`.") | |
self._padding_side = padding_side | |
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.language_model.get_input_embeddings() | |
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings | |
def set_input_embeddings(self, value): | |
self.language_model.set_input_embeddings(value) | |
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings | |
def get_output_embeddings(self): | |
return self.language_model.get_output_embeddings() | |
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings | |
def set_output_embeddings(self, new_embeddings): | |
self.language_model.set_output_embeddings(new_embeddings) | |
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder | |
def set_decoder(self, decoder): | |
self.language_model.set_decoder(decoder) | |
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder | |
def get_decoder(self): | |
return self.language_model.get_decoder() | |
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights | |
def tie_weights(self): | |
return self.language_model.tie_weights() | |
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: | |
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | |
# update vocab size | |
self.config.text_config.vocab_size = model_embeds.num_embeddings | |
self.vocab_size = model_embeds.num_embeddings | |
return model_embeds | |
def _merge_input_ids_with_audio_features( | |
self, audio_features, num_audio_tokens, inputs_embeds, input_ids, attention_mask, labels | |
): | |
""" | |
Merge input_ids with with audio features into final embeddings | |
Args: | |
audio_features (`torch.Tensor` of shape `(num_audios, max_audio_tokens, embed_dim)`): | |
All audio vectors of all audios in the batch | |
num_audio_tokens (`torch.LongTensor` of shape `(num_audios)`): | |
The length of audio embeddings of each audio as stacked in `audio_features` | |
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`): | |
Token embeddings before merging with audio embeddings | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Input_ids of tokens, possibly filled with audio token | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Mask to avoid performing attention on padding token indices. | |
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) | |
labels need to be recalculated to support training (if provided) | |
Returns: | |
final_embedding, final_attention_mask, final_labels, position_ids, final_input_ids | |
Explanation: | |
each audio has variable length embeddings, with length specified by num_audio_tokens | |
audio_features is concatenation of all audio embed vectors | |
task: fill each <|AUDIO|> with the correct number of audio embeddings | |
Example: | |
X (5 tokens), Y (3 tokens), Z (8 tokens) | |
X, Y are in the same sequence (in-context learning) | |
if right padding | |
input_ids: [ | |
a b c d e f X g h i j k Y l m | |
o p q r Z s t u v _ _ _ _ _ _ | |
] | |
input_ids should be: [ | |
a b c d e f X X X X X g h i j k Y Y Y l m | |
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _ | |
] | |
labels should be: [ | |
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m | |
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _ | |
] | |
elif left padding | |
input_ids: [ | |
a b c d e f X g h i j k Y l m | |
_ _ _ _ _ _ o p q r Z s t u v | |
] | |
input_ids should be: [ | |
a b c d e f X X X X X g h i j k Y Y Y l m | |
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v | |
] | |
labels should be: [ | |
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m | |
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v | |
] | |
Edge cases: | |
* If tokens are same but audio token sizes are different, then cannot infer left or right padding | |
```python | |
url1 = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3" | |
audio1, _ = librosa.load(BytesIO(urlopen(url1).read()), sr=processor.feature_extractor.sampling_rate) | |
url2 = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav" | |
audio2, _ = librosa.load(BytesIO(urlopen(url2).read()), sr=processor.feature_extractor.sampling_rate) | |
prompts = [ | |
"[INST] <|AUDIO|>\nWhat is that in this audio? [/INST]", | |
"[INST] <|AUDIO|>\nWhat is that in this audio? [/INST]", | |
] | |
inputs = processor(text=prompts, audios=[audio1, audio2], return_tensors='pt', padding=True).to("cuda") | |
audio1 has 101 tokens, while audio2 has 72 tokens | |
``` | |
input_ids: [ | |
a b c d X g h | |
i j Y k l m n | |
] | |
where X is 3 tokens while Y is 5, this mean after merge | |
if left-padding (batched generation) | |
input_ids should be: [ | |
_ _ a b c d X X X g h | |
i j Y Y Y Y Y k l m n | |
] | |
elif (right padding) (training) | |
input_ids should be: [ | |
a b c d X X X g h _ _ | |
i j Y Y Y Y Y k l m n | |
] | |
""" | |
num_audios, max_audio_tokens, embed_dim = audio_features.shape | |
audio_features_mask = torch.arange(max_audio_tokens).expand(num_audios, max_audio_tokens).to( | |
num_audio_tokens.device | |
) < num_audio_tokens.unsqueeze(1) | |
masked_audio_features = audio_features[audio_features_mask].view(-1, embed_dim) | |
batch_size, sequence_length = input_ids.shape | |
_left_padding = torch.any(attention_mask[:, 0] == 0) | |
_right_padding = torch.any(attention_mask[:, -1] == 0) | |
left_padding = True | |
if batch_size > 1: | |
if _left_padding and not _right_padding: | |
left_padding = True | |
elif not _left_padding and _right_padding: | |
left_padding = False | |
elif not _left_padding and not _right_padding: | |
# both side is 1, so cannot tell | |
left_padding = self.padding_side == "left" | |
else: | |
# invalid attention_mask | |
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") | |
# 1. Create a mask to know where special audio tokens are | |
special_audio_token_mask = input_ids == self.config.audio_token_index | |
num_special_audio_tokens = torch.sum(special_audio_token_mask, dim=-1) | |
# In case the Audio model or the Language model has been offloaded to CPU, we need to manually | |
# set the corresponding tensors into their correct target device. | |
target_device = inputs_embeds.device | |
attention_mask = attention_mask.to(target_device) | |
input_ids = input_ids.to(target_device) | |
num_audio_tokens = num_audio_tokens.to(target_device) | |
batch_indices, non_audio_indices = torch.where( | |
(input_ids != self.config.audio_token_index) & (attention_mask == 1) | |
) | |
# 2. Compute the positions where text should be written | |
# Calculate new positions for text tokens in merged audio-text sequence. | |
# `special_audio_token_mask` identifies audio tokens. Each audio token will be replaced by `audio_feat_lengths - 1` text tokens. | |
# `torch.cumsum` computes how each audio token shifts subsequent text token positions. | |
token_placeholder_num = torch.zeros_like(input_ids) | |
token_placeholder_num[special_audio_token_mask] = num_audio_tokens.long() - 1 | |
token_placeholder_num = token_placeholder_num + 1 | |
new_token_positions = torch.cumsum(token_placeholder_num, -1) - 1 | |
max_token_num = token_placeholder_num.sum(-1).max() | |
nb_audio_pad = max_token_num - 1 - new_token_positions[:, -1] | |
if left_padding: | |
new_token_positions += nb_audio_pad[:, None] # offset for left padding | |
text_to_overwrite = new_token_positions[batch_indices, non_audio_indices] | |
batch_indices, non_audio_indices, text_to_overwrite = ( | |
batch_indices.to(target_device), | |
non_audio_indices.to(target_device), | |
text_to_overwrite.to(target_device), | |
) | |
# 3. Create the full embedding, already padded to the maximum position | |
final_embedding = torch.zeros( | |
batch_size, max_token_num, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device | |
) | |
final_attention_mask = torch.zeros( | |
batch_size, max_token_num, dtype=attention_mask.dtype, device=inputs_embeds.device | |
) | |
final_input_ids = torch.full( | |
(batch_size, max_token_num), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device | |
) | |
# 4. Fill the embeddings based on the mask. If we have ["hey" "<audio>", "how", "are"] | |
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the audio features | |
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_audio_indices] | |
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_audio_indices] | |
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_audio_indices] | |
final_labels = None | |
if labels is not None: | |
labels = labels.to(target_device) | |
final_labels = torch.full_like(final_attention_mask, self.config.ignore_index).to(torch.long) | |
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_audio_indices] | |
# 5. Fill the embeddings corresponding to the audios. Anything that is still zeros needs filling | |
audio_to_overwrite = torch.full( | |
(batch_size, max_token_num), True, dtype=torch.bool, device=inputs_embeds.device | |
) | |
audio_to_overwrite[batch_indices, text_to_overwrite] = False | |
seq_indices = torch.arange(max_token_num).unsqueeze(0).to(target_device) | |
seq_indices = seq_indices.expand(batch_size, max_token_num) | |
if left_padding: | |
# exclude padding on the left | |
max_token_num = max_token_num.to(target_device) | |
val = (max_token_num - seq_indices) <= ( | |
token_placeholder_num.sum(-1) - (attention_mask == 0).long().sum(-1) | |
)[:, None] | |
else: | |
# exclude padding on the right | |
val = seq_indices < (token_placeholder_num.sum(-1) - (attention_mask == 0).long().sum(-1))[:, None] | |
audio_to_overwrite &= val | |
if audio_to_overwrite.sum() != num_audio_tokens.sum(): | |
raise ValueError( | |
f"The input provided to the model are wrong. The number of audio tokens is {num_special_audio_tokens} while" | |
f" the number of audio given to the model is {num_audios}. This prevents correct indexing and breaks batch generation." | |
) | |
final_embedding[audio_to_overwrite] = ( | |
masked_audio_features.contiguous().reshape(-1, embed_dim).to(target_device) | |
) | |
final_attention_mask |= audio_to_overwrite | |
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) | |
return final_embedding, final_attention_mask, final_labels, position_ids, final_input_ids | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
input_features: torch.FloatTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
feature_attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Qwen2AudioCausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from io import BytesIO | |
>>> from urllib.request import urlopen | |
>>> import librosa | |
>>> from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration | |
>>> model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B") | |
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B") | |
>>> prompt = "<|audio_bos|><|AUDIO|><|audio_eos|>Generate the caption in English:" | |
>>> url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3" | |
>>> audio, _ = librosa.load(BytesIO(urlopen(url).read()), sr=self.processor.feature_extractor.sampling_rate) | |
>>> inputs = processor(text=prompt, audios=audio, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(**inputs, max_length=30) | |
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Generate the caption in English: Glass is breaking." | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
target_device = self.audio_tower.device | |
if input_features is not None: | |
input_features = input_features.to(target_device) | |
feature_attention_mask = feature_attention_mask.to(target_device) | |
if inputs_embeds is None: | |
# 1. Extract the input embeddings | |
inputs_embeds = self.get_input_embeddings()(input_ids) | |
# 2. Merge text and audios | |
if input_features is not None and input_ids.shape[1] != 1: | |
audio_feat_lengths, audio_output_lengths = self.audio_tower._get_feat_extract_output_lengths( | |
feature_attention_mask.sum(-1) | |
) | |
batch_size, _, max_mel_seq_len = input_features.shape | |
max_seq_len = (max_mel_seq_len - 2) // 2 + 1 | |
# Create a sequence tensor of shape (batch_size, max_seq_len) | |
seq_range = ( | |
torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device) | |
.unsqueeze(0) | |
.expand(batch_size, max_seq_len) | |
) | |
lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len) | |
# Create mask | |
padding_mask = seq_range >= lengths_expand | |
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand( | |
batch_size, 1, max_seq_len, max_seq_len | |
) | |
audio_attention_mask = audio_attention_mask_.to( | |
dtype=self.audio_tower.conv1.weight.dtype, device=self.audio_tower.conv1.weight.device | |
) | |
audio_attention_mask[audio_attention_mask_] = float("-inf") | |
audio_outputs = self.audio_tower(input_features, attention_mask=audio_attention_mask) | |
selected_audio_feature = audio_outputs.last_hidden_state | |
audio_features = self.multi_modal_projector(selected_audio_feature) | |
inputs_embeds, attention_mask, labels, position_ids, _ = self._merge_input_ids_with_audio_features( | |
audio_features, audio_output_lengths, inputs_embeds, input_ids, attention_mask, labels | |
) | |
outputs = self.language_model( | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
logits = outputs[0] | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
if attention_mask is not None: | |
shift_attention_mask = attention_mask[..., 1:] | |
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() | |
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() | |
else: | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct( | |
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) | |
) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return Qwen2AudioCausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
attention_mask=attention_mask, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
inputs_embeds=None, | |
input_features=None, | |
attention_mask=None, | |
**kwargs, | |
): | |
# Overwritten -- custom processing (note: might not be needed, but there are no generation tests running atm) | |
if past_key_values is not None: | |
if isinstance(past_key_values, Cache): | |
cache_length = past_key_values.get_seq_length() | |
past_length = past_key_values.seen_tokens | |
else: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
# Here, we get the attention_mask, which was previously stored in the state after _merge_input_ids_with_audio_features. | |
if input_features is not None and kwargs.get("attention_mask") is not None: | |
attention_mask = kwargs["attention_mask"] | |
attention_mask = torch.cat( | |
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 | |
) | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
elif self.config.audio_token_index in input_ids: | |
input_ids = input_ids[:, input_ids.shape[1] - 1 :] | |
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the | |
# older attention values, as their corresponding values are not part of the input. | |
if cache_length < past_length and attention_mask is not None: | |
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
feature_attention_mask = kwargs.get("feature_attention_mask", None) | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"input_features": input_features, | |
"feature_attention_mask": feature_attention_mask, | |
} | |
) | |
return model_inputs | |
def _update_model_kwargs_for_generation( | |
self, | |
outputs: ModelOutput, | |
model_kwargs: Dict[str, Any], | |
is_encoder_decoder: bool = False, | |
num_new_tokens: int = 1, | |
) -> Dict[str, Any]: | |
# update past_key_values keeping its naming used in model code | |
cache_name, cache = self._extract_past_from_model_output(outputs) | |
model_kwargs[cache_name] = cache | |
if getattr(outputs, "state", None) is not None: | |
model_kwargs["state"] = outputs.state | |
# update attention_mask | |
if getattr(outputs, "attention_mask", None) is not None: | |
model_kwargs["attention_mask"] = outputs.attention_mask | |
# update token_type_ids with last value | |
if "token_type_ids" in model_kwargs: | |
token_type_ids = model_kwargs["token_type_ids"] | |
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) | |
if not is_encoder_decoder: | |
# update attention mask | |
if "attention_mask" in model_kwargs: | |
attention_mask = model_kwargs["attention_mask"] | |
model_kwargs["attention_mask"] = torch.cat( | |
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 | |
) | |
else: | |
# update decoder attention mask | |
if "decoder_attention_mask" in model_kwargs: | |
decoder_attention_mask = model_kwargs["decoder_attention_mask"] | |
model_kwargs["decoder_attention_mask"] = torch.cat( | |
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], | |
dim=-1, | |
) | |
if model_kwargs.get("use_cache", True): | |
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens | |
else: | |
past_positions = model_kwargs.pop("cache_position") | |
new_positions = torch.arange( | |
past_positions[-1] + 1, past_positions[-1] + num_new_tokens + 1, dtype=past_positions.dtype | |
).to(past_positions.device) | |
model_kwargs["cache_position"] = torch.cat((past_positions, new_positions)) | |
return model_kwargs | |
def _reorder_cache(self, *args, **kwargs): | |
return self.language_model._reorder_cache(*args, **kwargs) |