Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import torch | |
from transformers import PretrainedConfig, SiglipImageProcessor | |
from llava.model.multimodal_encoder.vision_encoder import VisionTower, VisionTowerDynamicS2, VisionTowerS2 | |
from .siglip import SiglipVisionModel | |
class SiglipVisionTower(VisionTower): | |
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None: | |
super().__init__(model_name_or_path, config) | |
# TODO(ligengl): why pass config here leading to errors? | |
self.vision_tower = SiglipVisionModel.from_pretrained( | |
model_name_or_path, | |
attn_implementation="flash_attention_2", | |
torch_dtype=eval(config.model_dtype), | |
) | |
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path) | |
self.is_loaded = True | |
class SiglipVisionTowerS2(VisionTowerS2): | |
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None: | |
super().__init__(model_name_or_path, config) | |
self.vision_tower = SiglipVisionModel.from_pretrained( | |
model_name_or_path, | |
attn_implementation="flash_attention_2", | |
torch_dtype=eval(config.model_dtype), | |
) | |
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path) | |
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information | |
self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[-1] | |
self.is_loaded = True | |
class SiglipVisionTowerDynamicS2(VisionTowerDynamicS2): | |
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None: | |
super().__init__(model_name_or_path, config) | |
self.vision_tower = SiglipVisionModel.from_pretrained( | |
model_name_or_path, | |
attn_implementation="flash_attention_2", | |
torch_dtype=eval(config.model_dtype), | |
) | |
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path) | |
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information | |
self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[0] | |
self.is_loaded = True | |