SreyanG-NVIDIA's picture
Upload 225 files
174ae06 verified
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import argparse
import gc
import math
import os
import random
from collections import defaultdict
from typing import Any, Dict, Iterable, List, Tuple
# import cv2
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from datasets import load_dataset, load_dataset_builder
from datasets.distributed import split_dataset_by_node
from einops import rearrange
from PIL import Image
from torch import nn
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
from tqdm import tqdm
# from common import rank_print, load_model, get_standard_transform, collate
#
# try:
# import wandb
# except ImportError:
# wandb = None
LAYER_STATS = dict()
@torch.inference_mode()
def main(rank: int = 0, world_size: int = 1):
"""
Computes the RankMe (http://arxiv.org/abs/2210.02885) and LiDAR (http://arxiv.org/abs/2312.04000)
estimates of the rank of the produced embeddings. While RADIO doesn't train in a multi-view setting
which is an assumption of LiDAR, the metric does integrate an important concept of the invariance of the
summary features to different view/augmentations of the same image.
"""
local_rank = rank % torch.cuda.device_count()
torch.cuda.set_device(local_rank)
cv2.setNumThreads(1)
device = torch.device("cuda", local_rank)
parser = argparse.ArgumentParser(description="Compute SSL embedding rank estimates")
parser.add_argument("-v", "--model-version", default="radio_v2", help="Which radio model to load.")
parser.add_argument("-d", "--dataset", default="imagenet-1k", help="The name of the dataset to classify")
parser.add_argument("--split", default="validation", help="The dataset split to use.")
parser.add_argument("-n", default=10, type=int, help="The number of samples to load")
parser.add_argument(
"-r",
"--resolution",
nargs="+",
type=int,
default=None,
help="The input image resolution."
" If one value is specified, the shortest dimension is resized to this."
" If two, the image is center cropped."
" If not specified, center cropped 378px is used."
" Default: The RADIO model's preferred resolution.",
)
parser.add_argument(
"--resize-multiple",
type=int,
default=None,
help="Resize images with dimensions a multiple of this value."
" This should be equal to the patch size of a ViT (e.g. RADIOv1)",
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="The batch size. If the input is variable sized, then this argument becomes a maximum.",
)
parser.add_argument("--workers", default=8, type=int, help="Number of loader workers to use")
parser.add_argument(
"--vitdet-window-size", default=None, type=int, help="Enable ViTDet at the specific window size"
)
parser.add_argument("--output-dir", default="vis_denoise", type=str)
parser.add_argument("--adaptor-name", default=None, type=str, help="Generate features from a teacher adaptor")
args, _ = parser.parse_known_args()
torch.manual_seed(42 + rank)
np.random.seed(42 + rank)
random.seed(42 + rank)
rank_print("Loading model...")
model, preprocessor, info = load_model(
args.model_version, vitdet_window_size=args.vitdet_window_size, adaptor_name=args.adaptor_name
)
model.to(device=device).eval()
if isinstance(preprocessor, nn.Module):
preprocessor.to(device).eval()
rank_print("Done")
rank_print("Loading dataset...")
ds_builder = load_dataset_builder(args.dataset, trust_remote_code=True)
if args.resolution is None:
args.resolution = (model.preferred_resolution.height, model.preferred_resolution.width)
patch_size = model.patch_size
if args.resize_multiple is None:
args.resize_multiple = getattr(model, "min_resolution_step", model.patch_size)
transform = get_standard_transform(args.resolution, args.resize_multiple)
dataset = ds_builder.as_dataset(split=args.split)
dataset = dataset.to_iterable_dataset(num_shards=world_size * max(1, args.workers))
dataset = split_dataset_by_node(dataset, rank=rank, world_size=world_size)
dataset = dataset.map(
lambda ex: dict(image=transform(ex["image"]), label=torch.as_tensor(ex["label"], dtype=torch.int64))
)
loader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
collate_fn=collate,
pin_memory=args.workers > 0,
drop_last=False,
)
rank_print("Done")
rank_print(f"Description: {ds_builder.info.description}")
dirs = dict(
orig=os.path.join(args.output_dir, "orig"),
viz=os.path.join(args.output_dir, "viz"),
sbs=os.path.join(args.output_dir, "sbs"),
)
for d in dirs.values():
os.makedirs(d, exist_ok=True)
ctr = 0
for batches in loader:
if ctr >= args.n:
break
for images, _ in batches:
images = images.to(device=device, non_blocking=True)
all_feat = []
with torch.autocast(device.type, dtype=torch.bfloat16):
p_images = preprocessor(images)
output = model(p_images)
if args.adaptor_name:
all_feat = [
output["backbone"].features,
output[args.adaptor_name].features,
]
else:
all_feat = [output[1]]
all_feat = torch.stack(all_feat, dim=1)
num_rows = images.shape[-2] // patch_size
num_cols = images.shape[-1] // patch_size
all_feat = rearrange(all_feat, "b m (h w) c -> b m h w c", h=num_rows, w=num_cols).float()
for i, feats in enumerate(all_feat):
colored = []
for features in feats:
color = get_pca_map(features, images.shape[-2:])
colored.append(color)
orig = cv2.cvtColor(images[i].permute(1, 2, 0).cpu().numpy(), cv2.COLOR_RGB2BGR)
cv2.imwrite(f'{dirs["orig"]}/vis_{ctr}.jpg', orig * 255)
cv2.imwrite(f'{dirs["viz"]}/vis_{ctr}.jpg', colored[-1] * 255)
op = np.concatenate([orig] + colored, axis=1) * 255
cv2.imwrite(f'{dirs["sbs"]}/vis_{ctr}.jpg', op)
ctr += 1
def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False):
# features: (N, C)
# m: a hyperparam controlling how many std dev outside for outliers
assert len(features.shape) == 2, "features should be (N, C)"
reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2]
colors = features @ reduction_mat
if remove_first_component:
colors_min = colors.min(dim=0).values
colors_max = colors.max(dim=0).values
tmp_colors = (colors - colors_min) / (colors_max - colors_min)
fg_mask = tmp_colors[..., 0] < 0.2
reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2]
colors = features @ reduction_mat
else:
fg_mask = torch.ones_like(colors[:, 0]).bool()
d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values)
mdev = torch.median(d, dim=0).values
s = d / mdev
try:
rins = colors[fg_mask][s[:, 0] < m, 0]
gins = colors[fg_mask][s[:, 1] < m, 1]
bins = colors[fg_mask][s[:, 2] < m, 2]
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
except:
rins = colors
gins = colors
bins = colors
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat)
def get_pca_map(
feature_map: torch.Tensor,
img_size,
interpolation="bicubic",
return_pca_stats=False,
pca_stats=None,
):
"""
feature_map: (1, h, w, C) is the feature map of a single image.
"""
feature_map = feature_map.float()
if feature_map.shape[0] != 1:
# make it (1, h, w, C)
feature_map = feature_map[None]
if pca_stats is None:
reduct_mat, color_min, color_max = get_robust_pca(feature_map.reshape(-1, feature_map.shape[-1]))
else:
reduct_mat, color_min, color_max = pca_stats
pca_color = feature_map @ reduct_mat
pca_color = (pca_color - color_min) / (color_max - color_min)
pca_color = F.interpolate(
pca_color.permute(0, 3, 1, 2),
size=img_size,
mode=interpolation,
).permute(0, 2, 3, 1)
pca_color = pca_color.clamp(0, 1)
pca_color = pca_color.cpu().numpy().squeeze(0)
if return_pca_stats:
return pca_color, (reduct_mat, color_min, color_max)
return pca_color
def get_scale_map(
scalar_map: torch.Tensor,
img_size,
interpolation="nearest",
):
"""
scalar_map: (1, h, w, C) is the feature map of a single image.
"""
if scalar_map.shape[0] != 1:
scalar_map = scalar_map[None]
scalar_map = (scalar_map - scalar_map.min()) / (scalar_map.max() - scalar_map.min() + 1e-6)
scalar_map = F.interpolate(
scalar_map.permute(0, 3, 1, 2),
size=img_size,
mode=interpolation,
).permute(0, 2, 3, 1)
# cmap = plt.get_cmap("viridis")
# scalar_map = cmap(scalar_map)[..., :3]
# make it 3 channels
scalar_map = torch.cat([scalar_map] * 3, dim=-1)
scalar_map = scalar_map.cpu().numpy().squeeze(0)
return scalar_map
def get_similarity_map(features: torch.Tensor, img_size=(224, 224)):
"""
compute the similarity map of the central patch to the rest of the image
"""
assert len(features.shape) == 4, "features should be (1, C, H, W)"
H, W, C = features.shape[1:]
center_patch_feature = features[0, H // 2, W // 2, :]
center_patch_feature_normalized = center_patch_feature / center_patch_feature.norm()
center_patch_feature_normalized = center_patch_feature_normalized.unsqueeze(1)
# Reshape and normalize the entire feature tensor
features_flat = features.view(-1, C)
features_normalized = features_flat / features_flat.norm(dim=1, keepdim=True)
similarity_map_flat = features_normalized @ center_patch_feature_normalized
# Reshape the flat similarity map back to the spatial dimensions (H, W)
similarity_map = similarity_map_flat.view(H, W)
# Normalize the similarity map to be in the range [0, 1] for visualization
similarity_map = (similarity_map - similarity_map.min()) / (similarity_map.max() - similarity_map.min())
# we don't want the center patch to be the most similar
similarity_map[H // 2, W // 2] = -1.0
similarity_map = (
F.interpolate(
similarity_map.unsqueeze(0).unsqueeze(0),
size=img_size,
mode="bilinear",
)
.squeeze(0)
.squeeze(0)
)
similarity_map_np = similarity_map.cpu().numpy()
negative_mask = similarity_map_np < 0
colormap = plt.get_cmap("turbo")
# Apply the colormap directly to the normalized similarity map and multiply by 255 to get RGB values
similarity_map_rgb = colormap(similarity_map_np)[..., :3]
similarity_map_rgb[negative_mask] = [1.0, 0.0, 0.0]
return similarity_map_rgb
def get_cluster_map(
feature_map: torch.Tensor,
img_size,
num_clusters=10,
) -> torch.Tensor:
kmeans = KMeans(n_clusters=num_clusters, distance=CosineSimilarity, verbose=False)
if feature_map.shape[0] != 1:
# make it (1, h, w, C)
feature_map = feature_map[None]
labels = kmeans.fit_predict(feature_map.reshape(1, -1, feature_map.shape[-1])).float()
labels = (
F.interpolate(labels.reshape(1, *feature_map.shape[:-1]), size=img_size, mode="nearest").squeeze().cpu().numpy()
).astype(int)
cmap = plt.get_cmap("rainbow", num_clusters)
cluster_map = cmap(labels)[..., :3]
return cluster_map.reshape(img_size[0], img_size[1], 3)
if __name__ == "__main__":
rank = 0
world_size = 1
# if 'WORLD_SIZE' in os.environ:
# dist.init_process_group(backend='nccl')
# rank = dist.get_rank()
# world_size = dist.get_world_size()
main(rank, world_size)