Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
import re | |
import torch | |
try: | |
from .FloatPointQuantizeTorch import * | |
from .FloatPointQuantizeTriton import * | |
except: | |
from FloatPointQuantizeTorch import * | |
from FloatPointQuantizeTriton import * | |
def block_cut(input, row_block, column_block, pad_block=False): | |
# print(input.shape) | |
original_shape = input.shape | |
# input tensor shape is M * N | |
if len(input.shape) > 2: | |
input = input.reshape(-1, input.shape[2]) | |
elif len(input.shape) == 2: | |
pass | |
else: | |
raise ValueError(f"input shape {input.shape} does not match for block cut, {input}") | |
M, N = input.shape[0], input.shape[1] | |
if row_block == -1: | |
row_block = M | |
if column_block == -1: | |
column_block = N | |
if pad_block: | |
row_remainder, col_remainder = M % row_block, N % column_block | |
if row_remainder: | |
row_pad = row_block - row_remainder | |
else: | |
row_pad = 0 | |
if col_remainder: | |
col_pad = column_block - col_remainder | |
else: | |
col_pad = 0 | |
input = torch.nn.functional.pad( | |
input, (0, col_pad, 0, row_pad), "constant", 0 | |
) # refer to torch's doc to see why | |
M, N = input.shape[0], input.shape[1] | |
row_num, column_num = M // row_block, N // column_block | |
else: | |
row_num, column_num = M // row_block, N // column_block | |
assert row_num * row_block == M, f"{row_num}, {row_block}, {M}, {original_shape}" | |
assert column_num * column_block == N, f"{column_num}, {column_block}, {N}, {original_shape}" | |
# print(input.shape) | |
input = ( | |
input.reshape(row_num, row_block, column_num, column_block) | |
.permute(0, 2, 1, 3) | |
.reshape(row_num * column_num, row_block, column_block) | |
) | |
# print(input.shape) | |
return input | |
def block_reshape(input, origin_input, row_block, column_block, pad_block=False): | |
if len(origin_input.shape) > 2: | |
flatten_input = origin_input.reshape(-1, origin_input.shape[2]) | |
elif len(origin_input.shape) == 2: | |
flatten_input = origin_input | |
else: | |
raise ValueError(f"input shape {input.shape} does not match for block cut") | |
M, N = flatten_input.shape[0], flatten_input.shape[1] | |
if row_block == -1: | |
row_block = M | |
if column_block == -1: | |
column_block = N | |
if pad_block: | |
row_remainder, col_remainder = M % row_block, N % column_block | |
if row_remainder: | |
row_pad = row_block - row_remainder | |
else: | |
row_pad = 0 | |
if col_remainder: | |
col_pad = column_block - col_remainder | |
else: | |
col_pad = 0 | |
pad_origin_input = torch.nn.functional.pad(origin_input, (0, col_pad, 0, row_pad), "constant", 0) | |
M, N = pad_origin_input.shape[0], pad_origin_input.shape[1] | |
row_num, column_num = M // row_block, N // column_block | |
else: | |
row_num, column_num = M // row_block, N // column_block | |
input = ( | |
input.reshape(row_num, column_num, row_block, column_block) | |
.permute(0, 2, 1, 3) | |
.reshape(row_num * row_block, column_num * column_block) | |
) | |
M, N = flatten_input.shape[0], flatten_input.shape[1] | |
input = input[:M, :N] | |
if len(origin_input.shape) > 2: | |
input = input.reshape(origin_input.shape) | |
elif len(origin_input.shape) == 2: | |
pass | |
else: | |
raise ValueError(f"input shape {input.shape} does not match for block reshape") | |
return input | |
def block_verify_int8(input, row_block, column_block, layer_type, necessary=True): | |
Binput = block_cut(input, row_block, column_block) | |
Binput = Binput.to(torch.float32) | |
for n in range(Binput.shape[0]): | |
unique_values = len(torch.unique(Binput[n, :, :])) | |
if unique_values > 256: | |
if necessary: | |
raise ValueError(f"{layer_type} contains more than 256 unique values.") | |
else: | |
return False | |
return True | |
def block_quant(input, symm, bits, stochastic, epsilon, apply_quantize, layer_name): | |
Quant_fn = SymmQuantizer | |
return Quant_fn.apply(input, symm, bits, stochastic, epsilon, apply_quantize, layer_name) | |
def extract_bit(string): | |
match = re.match(r"INT(\d+)", string) | |
if match: | |
return "integer", int(match.group(1)), None | |
match = re.match(r"E(\d+)M(\d+)", string) | |
if match: | |
Ebit, Mbit = int(match.group(1)), int(match.group(2)) | |
if Ebit == 1: | |
return "integer", Mbit + 1, None | |
if Mbit == 0: | |
return "floatExM0", int(match.group(1)), 0 | |
return "floatExMy", int(match.group(1)), int(match.group(2)) | |
match = re.match(r"DE(\d+)", string) | |
if match: | |
return "Dynamic", int(match.group(1)), None | |
match = re.match(r"ZeroD(\d+)", string) | |
if match: | |
return "ZeroDynamic", int(match.group(1)), None | |
raise ValueError(f"{string} data format is not supported") | |
class SymmQuantizer(torch.autograd.function.InplaceFunction): | |
def forward(ctx, input, symm, bits, stochastic, epsilon, apply_quantize=True, layer_name=None): | |
with torch.no_grad(): | |
absmax_per_block = input.abs().amax(dim=(1, 2)).unsqueeze(1).unsqueeze(2) + epsilon | |
if bits == "100" or not apply_quantize: | |
return input, input, torch.ones_like(absmax_per_block) | |
elif bits == "FP32": | |
return input.to(torch.float32), input.to(torch.float32), torch.ones_like(absmax_per_block) | |
elif bits == "FP16": | |
return input.to(torch.float16), input.to(torch.float16), torch.ones_like(absmax_per_block) | |
elif bits == "BF16": | |
return input.to(torch.bfloat16), input.to(torch.bfloat16), torch.ones_like(absmax_per_block) | |
else: | |
QuantType, bit1, bit2 = extract_bit(bits) | |
if not symm: | |
bit1 = bit1 + 1 # pretend to be asymmtric | |
if QuantType == "integer": | |
Qn, Qp = -(2 ** (bit1 - 1) - 1), 2 ** (bit1 - 1) - 1 | |
elif QuantType == "floatExMy": | |
Qn, Qp = -(2 - 2 ** (-bit2)) * (2 ** (2 ** (bit1 - 1))), (2 - 2 ** (-bit2)) * ( | |
2 ** (2 ** (bit1 - 1)) | |
) | |
if bit1 == 4 and bit2 == 3: | |
Qn, Qp = -448, 448 | |
if bit1 == 5 and bit2 == 2: | |
Qn, Qp = -57344, 57344 | |
elif QuantType == "floatExM0": | |
Qn, Qp = -(2 ** (2 ** (bit1 - 1))) + 1, 2 ** (2 ** (bit1 - 1)) | |
elif QuantType == "Dynamic": | |
Qn, Qp = -1, 1 | |
elif QuantType == "ZeroDynamic": | |
Qn, Qp = -1, 1 | |
else: | |
raise NotImplementedError(f"{bits} is not supported by quantization") | |
scale_per_block = (2 * absmax_per_block) / (Qp - Qn) | |
scale_per_block = scale_per_block.to(input) | |
Qinput = input / scale_per_block | |
if QuantType == "integer": | |
if stochastic: | |
noise = Qinput.new(Qinput.shape).uniform_(-0.5, 0.5) | |
Qinput.add_(noise) | |
Qinput.clamp_(Qn, Qp).round_() | |
elif QuantType == "floatExMy": | |
# Qinput = floatExMy_quantize_torch(Qinput, bit1, bit2, stochastic) | |
Qinput = floatExMy_quantize_triton(Qinput, bit1, bit2, stochastic) | |
elif QuantType == "floatExM0": | |
Qinput = floatExM0_quantize_torch(Qinput, bit1, stochastic) | |
elif QuantType == "Dynamic": | |
Qinput = Dynamic_quantize_torch(Qinput, bit1, stochastic) | |
elif QuantType == "ZeroDynamic": | |
Qinput = ZeroDynamic_quantize_torch(Qinput, bit1, stochastic) | |
else: | |
raise NotImplementedError(f"{bits} is not supported by quantization") | |
RQinput = Qinput * scale_per_block | |
# print(f'Layer Name: {layer_name}: {input, Qinput, scale_per_block, absmax_per_block}', file=open('debug.txt', 'a')) | |
if input.dtype != Qinput.dtype: | |
print( | |
f"Input type is {input.dtype}, Qinput type is {Qinput.dtype}, scale_per_block type is {scale_per_block.dtype}", | |
file=open("debug.txt", "a"), | |
) | |
import IPython | |
IPython.embed() | |
return RQinput, Qinput, scale_per_block | |
def backward(ctx, grad_output): | |
return grad_output, None, None, None, None, None | |
if __name__ == "__main__": | |
import time | |
torch.manual_seed(0) | |
X = (torch.rand(2048, 4096).cuda() - 0.5) * 1000 | |
X = X.to(torch.bfloat16) | |
B_X = block_cut(X, -1, -1) | |
RQ_X, Q_X, S_X = block_quant( | |
B_X, symm=True, bits="E2M0", stochastic=True, epsilon=1e-14, apply_quantize=True, layer_name="" | |
) | |
RQ_X = block_reshape(RQ_X, X, -1, -1) | |
Q_X = block_reshape(Q_X, X, -1, -1) | |
# start = time.time() | |
# for _ in range(10000): | |
# B_X = block_cut(X, 2, 2) | |
# RQ_X, Q_X, S_X = block_quant(B_X, symm=True, bits="E5M2", stochastic=True, epsilon=1e-14, apply_quantize=True, layer_name='') | |
# RQ_X = block_reshape(RQ_X, X, 2, 2) | |
# Q_X = block_reshape(Q_X, X, 2, 2) | |
# torch.cuda.synchronize() | |
# end = time.time() | |
# print(f"Time cost: {end - start}") | |
print(X.dtype) | |
import IPython | |
IPython.embed() | |
# X = torch.tensor([ | |
# [1.1, 1, 1, 2, 2, 2, 3, 3, 3.01], | |
# [1.2, 1, 1, 2, 2, 2, 3, 3, 3.02], | |
# [4.1, 4, 4, 5, 5, 5, 6, 6, 6.01], | |
# [4.2, 4, 4, 5, 5, 5, 6, 6, 6.02], | |
# [7.1, 7, 7, 8, 8, 8, 9, 9, 9.01], | |
# [7.2, 7, 7, 8, 8, 8, 9, 9, 9.02], | |
# ]) | |
# B_X = block_cut(X, 2, 3) | |
# print(B_X) | |
# print(B_X.shape) | |
# Q_X = block_quant(B_X, symm=True, bits=2, stochastic=False) | |
# print(Q_X) | |
# print(Q_X.shape) | |