SreyanG-NVIDIA's picture
Upload 225 files
174ae06 verified
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import logging
import math
import os
import warnings
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Sequence
import torch
import transformers
from torch.utils.data import Dataset
from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, LlamaForCausalLM, set_seed
from transformers.modeling_utils import unwrap_model
import llava.data.dataset as dataset
import llava.data.datasets_mixture as datasets_mixture
from llava import conversation as conversation_lib
from llava.constants import (
DEFAULT_IM_END_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN,
IGNORE_INDEX,
IMAGE_TOKEN_INDEX,
)
from llava.data import make_supervised_data_module
from llava.mm_utils import process_image
from llava.model import LlavaLlamaConfig, LlavaLlamaModel
from llava.train.args import DataArguments, ModelArguments, TrainingArguments
from llava.train.callbacks.autoresume_callback import AutoResumeCallback
from llava.train.llava_trainer import LLaVATrainer, VILADPOTrainer
from llava.train.sequence_parallel import set_pg_manager
from llava.train.slurm_utils import TimeoutTerminateCallback
from llava.train.utils import (
get_checkpoint_path,
mprint,
prepare_config_for_training,
unit_test_rope_scaling,
vision_resolution_elevation,
)
from llava.trl.trainer.utils import DPODataCollatorWithPadding
local_rank = None
if "WANDB_PROJECT" not in os.environ:
os.environ["WANDB_PROJECT"] = "AF3"
def get_nb_trainable_parameters(model) -> tuple[int, int]:
r"""
Returns the number of trainable parameters and the number of all parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
# Due to the design of 4bit linear layers from bitsandbytes
# one needs to multiply the number of parameters by 2 to get
# the correct number of parameters
if param.__class__.__name__ == "Params4bit":
if hasattr(param, "element_size"):
num_bytes = param.element_size()
elif not hasattr(param, "quant_storage"):
num_bytes = 1
else:
num_bytes = param.quant_storage.itemsize
num_params = num_params * 2 * num_bytes
all_param += num_params
if param.requires_grad:
trainable_params += num_params
return trainable_params, all_param
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
return to_return
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
to_return = {k: t for k, t in named_params if "lora_" not in k}
if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def find_all_linear_names(model, lora_llm, lora_vt):
cls = torch.nn.Linear
lora_module_names = set()
multimodal_keywords = ["mm_projector", "vision_resampler"]
assert lora_llm or lora_vt, "Not applying LoRA to any of the modules..."
if not lora_llm:
multimodal_keywords += ["llm"]
if not lora_vt:
multimodal_keywords += ["vision_tower"]
for name, module in model.named_modules():
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
continue
if isinstance(module, cls):
if not "lm_head" in name:
lora_module_names.add(name)
# names = name.split(".")
# lora_module_names.add(names[0] if len(names) == 1 else names[-1])
# if "lm_head" in lora_module_names: # needed for 16-bit
# lora_module_names.remove("lm_head")
return list(lora_module_names)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(output_dir, _internal_call=True)
return
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def make_conv(prompt, answer):
return [
{
"from": "human",
"value": prompt,
},
{
"from": "gpt",
"value": answer,
},
]
@dataclass
class DPODataCollator(DPODataCollatorWithPadding):
tokenizer: Any = None
def collate(self, batch):
# first, pad everything to the same length
# input_ids, labels = tuple([instance[key] for instance in instances]
# for key in ("input_ids", "labels"))
# input_ids = torch.nn.utils.rnn.pad_sequence(
# input_ids,
# batch_first=True,
# padding_value=self.tokenizer.pad_token_id)
# labels = torch.nn.utils.rnn.pad_sequence(labels,
# batch_first=True,
# padding_value=IGNORE_INDEX)
# input_ids = input_ids[:, :self.tokenizer.model_max_length]
# labels = labels[:, :self.tokenizer.model_max_length]
# batch = dict(
# input_ids=input_ids,
# labels=labels,
# attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
# )
padded_batch = {}
for k in batch[0].keys():
if k.endswith("_input_ids") or k.endswith("_attention_mask") or k.endswith("_labels"):
# if "prompt" in k:
# to_pad = [torch.LongTensor(ex[k][::-1]) for ex in batch]
# else:
to_pad = [torch.LongTensor(ex[k]) for ex in batch]
if k.endswith("_input_ids"):
padding_value = self.pad_token_id
elif k.endswith("_labels"):
padding_value = self.label_pad_token_id
else:
continue
# elif k.endswith("_attention_mask"):
# padding_value = self.padding_value
# else:
# raise ValueError(f"Unexpected key in batch '{k}'")
padded_batch[k] = torch.nn.utils.rnn.pad_sequence(to_pad, batch_first=True, padding_value=padding_value)
# for the prompt, flip back so padding is on left side
# if "prompt" in k:
# padded_batch[k] = padded_batch[k].flip(dims=[1])
else:
padded_batch[k] = [ex[k] for ex in batch]
for k in ["chosen_input_ids", "rejected_input_ids"]:
attn_k = k.replace("input_ids", "attention_mask")
padded_batch[attn_k] = padded_batch[k].ne(self.pad_token_id)
return padded_batch
def tokenize_batch_element(self, prompt: str, chosen: str, rejected: str) -> Dict:
"""Tokenize a single batch element.
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation
in case the prompt + chosen or prompt + rejected responses is/are too long. First
we truncate the prompt; if we're still too long, we truncate the chosen/rejected.
We also create the labels for the chosen/rejected responses, which are of length equal to
the sum of the length of the prompt and the chosen/rejected response, with
label_pad_token_id for the prompt tokens.
"""
# import pdb; pdb.set_trace()
batch = {}
chosen_sources = make_conv(prompt, chosen)
rejected_sources = make_conv(prompt, rejected)
chosen_data_dict = dataset.preprocess([chosen_sources], self.tokenizer, has_image=True)
# chosen_data_dict['attention_mask'] = chosen_data_dict["input_ids"].ne(self.tokenizer.pad_token_id)
rejected_data_dict = dataset.preprocess([rejected_sources], self.tokenizer, has_image=True)
# rejected_data_dict['attention_mask'] = rejected_data_dict["input_ids"].ne(self.tokenizer.pad_token_id)
chosen_data_dict = {k: v[0] for k, v in chosen_data_dict.items()}
rejected_data_dict = {k: v[0] for k, v in rejected_data_dict.items()}
for k, toks in {
"chosen": chosen_data_dict,
"rejected": rejected_data_dict,
}.items():
for type_key, tokens in toks.items():
if type_key == "token_type_ids":
continue
batch[f"{k}_{type_key}"] = tokens
return batch
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
tokenized_batch = []
Xs, keys = [], []
for feature in features:
prompt = feature["prompt"]
chosen = feature["chosen"]
rejected = feature["rejected"]
batch_element = self.tokenize_batch_element(prompt, chosen, rejected)
batch_element["images"] = feature["images"]
tokenized_batch.append(batch_element)
# return collated batch
padded_batch = self.collate(tokenized_batch)
return padded_batch
import json
def load_jsonl(save_path):
with open(save_path) as f:
data = [json.loads(line) for line in f.readlines()]
return data
def load_json(path):
with open(path) as f:
data = json.load(f)
return data
def load_data(data_path):
if "jsonl" in data_path:
data_list = load_jsonl(data_path)
else:
data_list = load_json(data_path)
return data_list
class DPODataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_mixture: str, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments):
super(Dataset, self).__init__()
data_path = datasets_mixture.DATASETS_LEGACY[data_mixture].data_path
list_data_dict = load_data(data_path)
# if data_args.num_sample is not None:
# list_data_dict = list_data_dict[:data_args.num_sample]
print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.list_data_dict = list_data_dict
self.data_args = data_args
self.image_folder = datasets_mixture.DATASETS_LEGACY[data_mixture].image_path
def __len__(self):
# return 20
return len(self.list_data_dict)
@property
def lengths(self):
length_list = []
for sample in self.list_data_dict:
img_tokens = 128 if "image" in sample else 0
length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens)
return length_list
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
"""
{
'prompt': 'Is there a snowman wearing a green scarf and hat in the background?',
'chosen': 'No, there is no snowman wearing a green scarf and hat in the background of the image. The image features a person ...',
'rejected': 'No, there is no snowman in the background.',
'image_path': '/mnt/bn/liangkeg/data/ruohongz/dpo_data/dpo_images/LRVInstruction-000000009569.jpg',
'image_name': 'LRVInstruction-000000009569.jpg'
}
"""
# sources = self.list_data_dict[i]
# if isinstance(i, int):
# sources = [sources]
# assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
data_dict = copy.deepcopy(self.list_data_dict[i]) # inplace modification following
video_file = data_dict["video"] + ".mp4"
video_folder = self.image_folder
video_path = os.path.join(video_folder, video_file)
num_video_frames = self.data_args.num_video_frames if hasattr(self.data_args, "num_video_frames") else 8
loader_fps = self.data_args.fps if hasattr(self.data_args, "fps") else 0.0
fps = None
frame_count = None
images, frames_loaded = dataset.LazySupervisedDataset._load_video(
video_path, num_video_frames, loader_fps, self.data_args, fps=fps, frame_count=frame_count
)
image_tensor = torch.stack([process_image(image, self.data_args, None) for image in images])
image_tensor = torch.stack([process_image(image, self.data_args, None) for image in images])
data_dict["images"] = image_tensor
prompt = data_dict["prompt"]
prompt = prompt.replace("<video>", "").strip()
prompt = "<image>\n" * frames_loaded + prompt
data_dict["prompt"] = prompt
return data_dict
def train():
global local_rank
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# FIXME(zhijianl): This should be deprecated when we move to the new scripts.
if os.getenv("RUN_NAME") is not None:
training_args.run_name = os.getenv("RUN_NAME")
else:
training_args.run_name = training_args.output_dir.split("/")[-1]
local_rank = training_args.local_rank
compute_dtype = torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)
bnb_model_from_pretrained_args = {}
if training_args.bits in [4, 8]:
from transformers import BitsAndBytesConfig
bnb_model_from_pretrained_args.update(
dict(
device_map={"": training_args.device},
# load_in_4bit=training_args.bits == 4,
# load_in_8bit=training_args.bits == 8,
quantization_config=BitsAndBytesConfig(
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
llm_int8_skip_modules=["lm_head"],
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=training_args.double_quant,
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
),
)
)
set_seed(training_args.seed)
sp_degree = training_args.seq_parallel_size
ring_degree = training_args.seq_parallel_ring_size
if sp_degree > 1:
set_pg_manager(sp_degree, ring_degree, ring_type=training_args.seq_parallel_ring_type)
print(f"Sequence parallelism is enabled, SP = {sp_degree}")
resume_path, continue_training = get_checkpoint_path(training_args.output_dir)
if not continue_training:
print(f"Models has been ready under {training_args.output_dir}. Skipp training")
exit(0)
if resume_path:
resume_from_checkpoint = True
if training_args.lora_enable:
model_cls = LlavaLlamaModel
config = LlavaLlamaConfig.from_pretrained(model_args.model_name_or_path, resume=resume_from_checkpoint)
config.resume_path = model_args.model_name_or_path
else:
config = AutoConfig.from_pretrained(resume_path, trust_remote_code=True)
config.resume_path = resume_path
model_cls = eval(config.architectures[0])
else:
## first time training
resume_from_checkpoint = False
## llm and default multimodal model
if model_args.quantize_model.lower() in [
"qlinear",
"te_qlinear",
"qmem",
]: # However, qmem should not used currently becuase I haven't merge the memory reduction version into VILA
from functools import partial
from llava.model.language_model.qllava_qllama import QLlavaLlamaModel
model_cls = QLlavaLlamaModel
else:
assert (
model_args.quantize_model.lower() == "false"
), f"{model_args.quantize_model.lower()} for model_args.quantize_model is not supported"
model_cls = LlavaLlamaModel
config = LlavaLlamaConfig.from_pretrained(model_args.model_name_or_path, resume=resume_from_checkpoint)
if getattr(config, "resume_path", None) is not None:
config.resume_path = model_args.model_name_or_path
## extra configurations
prepare_config_for_training(config, model_args, training_args, data_args)
if model_args.quantize_model.lower() in ["qlinear", "te_qlinear", "qmem"]:
model = model_cls(
config=config,
model_args=model_args,
attn_implementation="flash_attention_2",
model_max_length=training_args.model_max_length,
cache_dir=training_args.cache_dir,
**bnb_model_from_pretrained_args,
)
else:
model = model_cls(
config=config,
attn_implementation="flash_attention_2",
model_max_length=training_args.model_max_length,
cache_dir=training_args.cache_dir,
**bnb_model_from_pretrained_args,
)
if not resume_path or training_args.lora_enable:
if model_args.mlp_path is not None:
state_dict = torch.load(model_args.mlp_path, map_location="cpu")
state_dict_new = {}
for k, v in state_dict.items():
if k == "0.weight":
state_dict_new["layers.1.weight"] = v
if k == "0.bias":
state_dict_new["layers.1.bias"] = v
if k == "1.weight":
state_dict_new["layers.2.weight"] = v
if k == "1.bias":
state_dict_new["layers.2.bias"] = v
if k == "3.weight":
state_dict_new["layers.4.weight"] = v
if k == "3.bias":
state_dict_new["layers.4.bias"] = v
model.get_mm_projector().load_state_dict(state_dict_new)
vision_resolution_elevation(model, config)
# This is an empty func.
# It would be overwritten by unit test script.
if unit_test_rope_scaling(model, model.llm.config, training_args):
return
# Take a look on model architecture.
mprint(model)
model.llm.config.use_cache = False
## set tunnable parameters
logging.warning(
"You are setting tunable parameters for the model. Previous args include 'freeze_backbone' and 'tune_mm_mlp_adapter' are deprecated.\n Notice: default value of tune_xxx is False, which means you would not tune this part."
)
def need_to_modify_do_sample(generation_config):
if generation_config is None:
warnings.warn("generation config is None, skip do sample modification")
return False
if generation_config.do_sample is False:
if generation_config.temperature is not None and generation_config.temperature != 1.0:
return True
if generation_config.top_p is not None and generation_config.top_p != 1.0:
return True
return False
if need_to_modify_do_sample(model.llm.generation_config):
model.llm.generation_config.do_sample = True
## quantize training @yunhao: be careful here
if training_args.bits in [4, 8]:
from peft import prepare_model_for_kbit_training
model.llm.config.torch_dtype = (
torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
model.llm = prepare_model_for_kbit_training(
model.llm, use_gradient_checkpointing=training_args.gradient_checkpointing
)
if training_args.gradient_checkpointing:
if hasattr(model.llm, "enable_input_require_grads"):
model.llm.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if training_args.lora_enable:
from peft import LoraConfig, PeftModel, get_peft_model
lora_config = LoraConfig(
use_dora=training_args.use_dora,
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=find_all_linear_names(model, training_args.lora_llm, training_args.lora_vt),
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
if resume_from_checkpoint:
# load non-lora weights
if os.path.exists(os.path.join(resume_path, "non_lora_trainables.bin")):
non_lora_trainables = torch.load(
os.path.join(resume_path, "non_lora_trainables.bin"),
map_location="cpu",
)
non_lora_trainables = {
(k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()
}
if any(k.startswith("model.model.") for k in non_lora_trainables):
non_lora_trainables = {
(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()
}
model.load_state_dict(non_lora_trainables, strict=False)
mprint("Resume from checkpoint...", resume_path)
model = PeftModel.from_pretrained(model, resume_path, is_trainable=True)
else:
mprint("Adding LoRA adapters...")
model = get_peft_model(model, lora_config)
mprint(model)
model.print_trainable_parameters()
# currently assume fft for mm projector
if training_args.lora_enable:
if not training_args.lora_llm:
model.get_llm().requires_grad_(training_args.tune_language_model)
if model.get_vision_tower():
if training_args.lora_vt:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_vision_tower().vision_tower.get_input_embeddings().register_forward_hook(
make_inputs_require_grad
)
elif training_args.tune_vision_tower:
model.get_vision_tower().requires_grad_(training_args.tune_vision_tower)
close_modules = ["embedding", "mlp", "self_attn", "head"]
for name, param in model.get_vision_tower().named_parameters():
if any(f"{module}" in name for module in close_modules):
print(f"freeze {name}")
param.requires_grad = False
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
if "embedding" in close_modules:
model.get_vision_tower().vision_tower.get_input_embeddings().register_forward_hook(
make_inputs_require_grad
)
model.get_mm_projector().requires_grad_(training_args.tune_mm_projector)
mprint(f"mm projector {training_args.tune_mm_projector}")
model.print_trainable_parameters()
else:
model.get_llm().requires_grad_(training_args.tune_language_model)
mprint(f"Tunable parameters:\nlanguage model {training_args.tune_language_model}")
if model.get_vision_tower():
model.get_vision_tower().requires_grad_(training_args.tune_vision_tower)
close_modules = ["embedding", "mlp", "self_attn", "head"]
for name, param in model.get_vision_tower().named_parameters():
if any(f"{module}" in name for module in close_modules):
print(f"freeze {name}")
param.requires_grad = False
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
if "embedding" in close_modules:
model.get_vision_tower().vision_tower.get_input_embeddings().register_forward_hook(
make_inputs_require_grad
)
model.get_mm_projector().requires_grad_(training_args.tune_mm_projector)
mprint(f"vision tower {training_args.tune_vision_tower}")
mprint(f"mm projector {training_args.tune_mm_projector}")
trainable_params, all_param = get_nb_trainable_parameters(model)
print(
f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.4f}"
)
if not any(
[training_args.tune_language_model, training_args.tune_vision_tower, training_args.tune_mm_projector]
):
logging.warning("You are not tuning any part of the model. Please check if this is intended.")
# @yunhao: tokenizer instantiation is moved into build_llm
tokenizer = model.tokenizer
if tokenizer.bos_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(bos_token="[BOS]"),
tokenizer=tokenizer,
model=model.llm,
)
# @yunhao: may move this block into method "build_llm"
tokenizer.pad_token = tokenizer.unk_token
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token="[PAD]"),
tokenizer=tokenizer,
model=model.llm,
)
if model_args.version in conversation_lib.conv_templates:
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
else:
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
# kentang-mit@: It will be useful in on-the-fly packing
model.llm.pad_token_id = tokenizer.pad_token_id
model.llm.config.tokenizer_padding_side = tokenizer.padding_side
model.llm.config.tokenizer_model_max_length = tokenizer.model_max_length
if training_args.lora_enable:
model.base_model.model.llm.pad_token_id = tokenizer.pad_token_id
vision_tower = model.get_vision_tower()
if vision_tower is not None:
data_args.image_processor = vision_tower.image_processor
data_args.is_multimodal = True
if hasattr(data_args, "num_video_frames") and data_args.num_video_frames != None:
model.config.num_video_frames = data_args.num_video_frames
else:
model.config.num_video_frames = 8
if hasattr(data_args, "fps"):
model.config.fps = data_args.fps
else:
model.config.fps = 0.0
model.config.image_aspect_ratio = data_args.image_aspect_ratio
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
model.config.mm_projector_lr = training_args.mm_projector_lr
model.config.vision_tower_lr = training_args.vision_tower_lr
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
assert not model_args.mm_use_im_patch_token
model.config.num_time_tokens = data_args.num_time_tokens = model_args.num_time_tokens
model.config.time_token_format = data_args.time_token_format = model_args.time_token_format
if model_args.num_time_tokens > 0:
time_tokens = [model.config.time_token_format.format(t=t) for t in range(model.config.num_time_tokens)]
num_new_tokens = tokenizer.add_tokens(time_tokens)
assert len(time_tokens) == num_new_tokens or num_new_tokens == 0
model.resize_token_embeddings(len(tokenizer))
model.config.time_token_ids = tokenizer.convert_tokens_to_ids(time_tokens)
else:
model.config.time_token_ids = []
model.config.soft_ce_std = model_args.soft_ce_std
num_patches = model.get_vision_tower().num_patches
downsample_rate = model.get_mm_projector().downsample_rate
num_image_tokens = math.ceil(num_patches**0.5 / downsample_rate) ** 2
data_args.num_image_tokens = num_image_tokens
## TODO pay attention to quantize
if training_args.bits in [4, 8]:
from peft.tuners.lora import LoraLayer
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if "norm" in name:
module = module.to(torch.float32)
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
data_module = make_supervised_data_module(
tokenizer=tokenizer,
data_args=data_args,
training_args=training_args,
)
# Add a training step_end callback to check whether to autosuspend.
callbacks = [AutoResumeCallback(), TimeoutTerminateCallback()]
if training_args.dpo:
ref_model = model_cls(
config=config,
attn_implementation="flash_attention_2",
model_max_length=training_args.model_max_length,
cache_dir=training_args.cache_dir,
**bnb_model_from_pretrained_args,
)
train_dataset = DPODataset(tokenizer=tokenizer, data_mixture=data_args.data_mixture, data_args=data_args)
data_collator = DPODataCollator(
tokenizer=tokenizer,
label_pad_token_id=IGNORE_INDEX,
pad_token_id=tokenizer.pad_token_id,
)
extra_info = []
extra_info.append(len(train_dataset))
training_args.sample_lens = extra_info
trainer = VILADPOTrainer(
model=model,
dpo_alpha=1.0,
gamma=0,
ref_model=ref_model,
tokenizer=tokenizer,
args=training_args,
beta=training_args.dpo_beta,
callbacks=callbacks,
train_dataset=train_dataset,
data_collator=data_collator,
)
else:
trainer = LLaVATrainer(model=model, tokenizer=tokenizer, args=training_args, callbacks=callbacks, **data_module)
print(
"length of dataloader:",
len(trainer.get_train_dataloader()),
len(trainer.train_dataset),
flush=True,
)
print(
"[GPU memory] before trainer",
torch.cuda.memory_allocated() / 1024 / 1024 / 1024,
flush=True,
)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
if training_args.debug_e2e:
exit()
trainer.save_state()
model.llm.config.use_cache = True
model.config.resume_path = model.config._name_or_path = training_args.output_dir
## TODO handle lora for new initialization
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(
non_lora_state_dict,
os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
)
else:
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train()