Spaces:
Running
on
Zero
Running
on
Zero
update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
|
|
3 |
import torch, pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
|
8 |
# ZeroGPU support
|
9 |
try:
|
@@ -24,12 +24,41 @@ except ImportError:
|
|
24 |
MODEL_NAME = "fdtn-ai/Foundation-Sec-8B"
|
25 |
#MODEL_NAME = "sshleifer/tiny-gpt2"
|
26 |
|
27 |
-
# Initialize tokenizer and model
|
28 |
print(f"Loading model: {MODEL_NAME}")
|
29 |
-
|
30 |
-
model
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Log device information
|
35 |
if hasattr(model, 'device'):
|
|
|
3 |
import torch, pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
|
8 |
# ZeroGPU support
|
9 |
try:
|
|
|
24 |
MODEL_NAME = "fdtn-ai/Foundation-Sec-8B"
|
25 |
#MODEL_NAME = "sshleifer/tiny-gpt2"
|
26 |
|
27 |
+
# Initialize tokenizer and model using pipeline approach
|
28 |
print(f"Loading model: {MODEL_NAME}")
|
29 |
+
try:
|
30 |
+
print(f"Initializing text generation model: {MODEL_NAME}")
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
32 |
+
text_pipeline = pipeline(
|
33 |
+
"text-generation",
|
34 |
+
model=MODEL_NAME,
|
35 |
+
tokenizer=tokenizer,
|
36 |
+
torch_dtype=torch.bfloat16,
|
37 |
+
device_map="auto",
|
38 |
+
trust_remote_code=True
|
39 |
+
)
|
40 |
+
print(f"Model initialized successfully: {MODEL_NAME}")
|
41 |
+
|
42 |
+
# Extract model and tokenizer from pipeline for direct access
|
43 |
+
model = text_pipeline.model
|
44 |
+
tok = text_pipeline.tokenizer
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error initializing model {MODEL_NAME}: {str(e)}")
|
48 |
+
print("Falling back to tiny-gpt2...")
|
49 |
+
MODEL_NAME = "sshleifer/tiny-gpt2"
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
51 |
+
text_pipeline = pipeline(
|
52 |
+
"text-generation",
|
53 |
+
model=MODEL_NAME,
|
54 |
+
tokenizer=tokenizer,
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
device_map="auto",
|
57 |
+
trust_remote_code=True
|
58 |
+
)
|
59 |
+
model = text_pipeline.model
|
60 |
+
tok = text_pipeline.tokenizer
|
61 |
+
print(f"Fallback model loaded: {MODEL_NAME}")
|
62 |
|
63 |
# Log device information
|
64 |
if hasattr(model, 'device'):
|