Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,138 Bytes
be096d1 3de9a41 6e9dc4d 44e10c6 99101f6 3de9a41 dc6db03 3de9a41 be096d1 99101f6 be096d1 3de9a41 dc6db03 3de9a41 44e10c6 35509b3 99101f6 3de9a41 44e10c6 dc6db03 44e10c6 dc6db03 44e10c6 dc6db03 44e10c6 dc6db03 44e10c6 3de9a41 44e10c6 df1519d 44e10c6 3de9a41 44e10c6 6e9dc4d 44e10c6 dc6db03 5c72cc4 44e10c6 5c72cc4 44e10c6 dc6db03 35509b3 44e10c6 5c72cc4 ff0d30b 992277b dc6db03 44e10c6 dc6db03 44e10c6 dc6db03 44e10c6 3de9a41 dc6db03 3de9a41 dc6db03 44e10c6 ff0d30b 99101f6 44e10c6 3de9a41 dc6db03 99101f6 3de9a41 44e10c6 3de9a41 61f85b2 3de9a41 61f85b2 dc6db03 44e10c6 61f85b2 dc6db03 61f85b2 3de9a41 61f85b2 44e10c6 3de9a41 dc6db03 3de9a41 dc6db03 3de9a41 44e10c6 61f85b2 44e10c6 3de9a41 44e10c6 3de9a41 44e10c6 3de9a41 44e10c6 3de9a41 44e10c6 3de9a41 44e10c6 3de9a41 44e10c6 3de9a41 44e10c6 3de9a41 be096d1 44e10c6 71551a7 44e10c6 3de9a41 71551a7 44e10c6 ff0d30b 3de9a41 be096d1 39ee1aa 44e10c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import gradio as gr
import json
import requests
import os
import pandas as pd
import folium
from folium.plugins import MeasureControl, Fullscreen, MarkerCluster
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
import time
import random
from typing import List, Tuple, Optional
import io
import tempfile
import warnings
warnings.filterwarnings("ignore")
# Map Tile Providers with reliable sources
MAP_TILES = {
"Toner": {
"url": "https://tiles.stadiamaps.com/tiles/stamen_toner/{z}/{x}/{y}.png",
"attr": "Stadia Maps"
}
}
# NuExtract API configuration
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}
class SafeGeocoder:
def __init__(self):
user_agent = f"location_mapper_v1_{random.randint(1000, 9999)}"
self.geolocator = Nominatim(user_agent=user_agent, timeout=10)
self.cache = {}
self.last_request = 0
def _respect_rate_limit(self):
current_time = time.time()
elapsed = current_time - self.last_request
if elapsed < 1.0:
time.sleep(1.0 - elapsed)
self.last_request = time.time()
def get_coords(self, location: str):
if not location or pd.isna(location):
return None
location = str(location).strip()
if location in self.cache:
return self.cache[location]
try:
self._respect_rate_limit()
result = self.geolocator.geocode(location)
if result:
coords = (result.latitude, result.longitude)
self.cache[location] = coords
return coords
self.cache[location] = None
return None
except Exception as e:
print(f"Geocoding error for '{location}': {e}")
self.cache[location] = None
return None
# NuExtract Functions
def extract_info(template, text):
try:
# Format prompt according to NuExtract-1.5 requirements
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
# Call API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 1000,
"do_sample": False
}
}
response = requests.post(API_URL, headers=headers, json=payload)
# If the model is loading, inform the user
if response.status_code == 503:
response_json = response.json()
if "error" in response_json and "loading" in response_json["error"]:
estimated_time = response_json.get("estimated_time", "unknown")
return f"⏳ Model is loading (ETA: {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unknown'} seconds)", "Please try again in a few minutes"
if response.status_code != 200:
return f"❌ API Error: {response.status_code}", response.text
# Process result
result = response.json()
# Handle different response formats
if isinstance(result, list) and len(result) > 0:
result_text = result[0].get("generated_text", "")
else:
result_text = str(result)
# Split at output marker if present
if "<|output|>" in result_text:
json_text = result_text.split("<|output|>")[1].strip()
else:
json_text = result_text
# Try to parse as JSON
try:
extracted = json.loads(json_text)
formatted = json.dumps(extracted, indent=2)
except json.JSONDecodeError:
return "❌ JSON parsing error", json_text
return "✅ Success", formatted
except Exception as e:
return f"❌ Error: {str(e)}", "{}"
def create_map(df, location_col):
# Initialize map with Toner style
m = folium.Map(location=[20, 0], zoom_start=2, control_scale=True)
# Add the single tile layer without controls
folium.TileLayer(
tiles=MAP_TILES["Toner"]["url"],
attr=MAP_TILES["Toner"]["attr"],
name="Toner",
overlay=False,
control=False
).add_to(m)
# Add plugins
Fullscreen().add_to(m)
MeasureControl(position='topright', primary_length_unit='kilometers').add_to(m)
# Process markers
geocoder = SafeGeocoder()
coords = []
marker_cluster = MarkerCluster(name="Locations").add_to(m)
processed_count = 0
for idx, row in df.iterrows():
if pd.isna(row[location_col]):
continue
location = str(row[location_col]).strip()
# Get additional info
additional_info = ""
for col in df.columns:
if col != location_col and not pd.isna(row[col]):
additional_info += f"<br><b>{col}:</b> {row[col]}"
# Parse locations
try:
locations = [loc.strip() for loc in location.split(',') if loc.strip()]
if not locations:
locations = [location]
except:
locations = [location]
# Process each location
for loc in locations:
point = geocoder.get_coords(loc)
if point:
popup_content = f"""
<div style="min-width: 200px; max-width: 300px">
<h4 style="font-family: 'Source Sans Pro', sans-serif; margin-bottom: 5px;">{loc}</h4>
<div style="font-family: 'Source Sans Pro', sans-serif; font-size: 14px;">
{additional_info}
</div>
</div>
"""
folium.Marker(
location=point,
popup=folium.Popup(popup_content, max_width=300),
tooltip=loc,
icon=folium.Icon(color="blue", icon="info-sign")
).add_to(marker_cluster)
coords.append(point)
processed_count += 1
# Set bounds
if coords:
m.fit_bounds(coords)
# Add custom font CSS
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap');
.leaflet-container {
font-family: 'Source Sans Pro', sans-serif;
}
</style>
"""
m.get_root().header.add_child(folium.Element(custom_css))
return m._repr_html_(), processed_count
def process_excel(file, places_column):
if file is None:
return None, "No file uploaded", None
try:
# Handle file
if hasattr(file, 'name'):
df = pd.read_excel(file.name)
elif isinstance(file, bytes):
df = pd.read_excel(io.BytesIO(file))
else:
df = pd.read_excel(file)
print(f"Columns in Excel file: {list(df.columns)}")
if places_column not in df.columns:
return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}", None
# Create map
map_html, processed_count = create_map(df, places_column)
# Save processed data
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
processed_path = tmp.name
df.to_excel(processed_path, index=False)
# Stats
total_locations = df[places_column].count()
success_rate = (processed_count / total_locations * 100) if total_locations > 0 else 0
stats = f"Found {processed_count} of {total_locations} locations ({success_rate:.1f}%)"
return map_html, stats, processed_path
except Exception as e:
import traceback
trace = traceback.format_exc()
print(f"Error processing file: {e}\n{trace}")
return None, f"Error processing file: {str(e)}", None
# Create separate interfaces for each tab to avoid conflicts
# CSS for improved styling
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;600;700&display=swap');
body, .gradio-container {
font-family: 'Source Sans Pro', sans-serif !important;
color: #333333;
}
h1 {
font-weight: 700 !important;
color: #2c6bb3 !important;
font-size: 2.5rem !important;
margin-bottom: 1rem !important;
}
h2 {
font-weight: 600 !important;
color: #4e8fd1 !important;
font-size: 1.5rem !important;
margin-top: 1rem !important;
margin-bottom: 0.75rem !important;
}
.gradio-button.primary {
background-color: #ff7518 !important;
}
.info-box {
background-color: #e8f4fd;
border-left: 4px solid #2c6bb3;
padding: 15px;
margin: 15px 0;
border-radius: 4px;
}
.file-upload-box {
border: 2px dashed #e0e0e0;
border-radius: 8px;
padding: 20px;
text-align: center;
transition: all 0.3s ease;
}
</style>
"""
# Text Extraction tab as a separate Blocks interface
with gr.Blocks(css=custom_css) as extraction_interface:
gr.HTML("""
<div class="info-box">
<h3 style="margin-top: 0;">Extract Structured Data from Text</h3>
<p>Use NuExtract-1.5 to automatically extract structured information from historical texts. Define the JSON template for the data you want to extract.</p>
</div>
""")
with gr.Row():
with gr.Column():
template = gr.Textbox(
label="JSON Template",
value='{"earthquake location": "", "dateline location": ""}',
lines=5
)
text = gr.Textbox(
label="Text to Extract From",
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daß in Yokohama bei einem Erdbeben sechs Personen getötet und 22 verwundet, in Tokio vier getötet und 22 verwundet wurden. In Yokohama seien 6VV Häuser zerstört worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind Brände ausgebrochen. Ein Eisenbahnzug stürzte in den Vajugawafluß zwischen Gotemba und Tokio. Sechs Züge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 größere Erdbeben zu verzeichnen gewesen.",
lines=8
)
extract_btn = gr.Button("Extract Information", variant="primary")
with gr.Column():
status = gr.Textbox(label="Status")
output = gr.Textbox(label="Output", lines=10)
extract_btn.click(
fn=extract_info,
inputs=[template, text],
outputs=[status, output]
)
# Mapping tab as a separate Blocks interface
with gr.Blocks(css=custom_css) as mapping_interface:
gr.HTML("""
<div class="info-box">
<h3 style="margin-top: 0;">Map Your Historical Locations</h3>
<p>Upload an Excel file containing location data to create an interactive map visualization. The tool will geocode your locations and display them on a map.</p>
</div>
""")
with gr.Row():
with gr.Column():
excel_file = gr.File(
label="Upload Excel File",
file_types=[".xlsx", ".xls"],
elem_classes="file-upload-box"
)
places_column = gr.Textbox(
label="Location Column Name",
value="dateline_locations",
placeholder="e.g., 'dateline_locations', 'earthquake_locations', or 'place_of_distribution'"
)
process_btn = gr.Button("Generate Map", variant="primary")
with gr.Column():
map_output = gr.HTML(
label="Interactive Map",
value="""
<div style="text-align:center; height:70vh; display:flex; align-items:center; justify-content:center;
background-color:#f5f5f5; border:1px solid #e0e0e0; border-radius:8px;">
<div>
<img src="https://cdn-icons-png.flaticon.com/512/854/854878.png" width="100">
<p style="margin-top:20px; color:#666;">Your map will appear here after processing</p>
</div>
</div>
"""
)
stats_output = gr.Textbox(
label="Location Statistics",
lines=2
)
processed_file = gr.File(
label="Download Processed Data",
visible=True,
interactive=False
)
def process_and_map(file, column):
if file is None:
return None, "Please upload an Excel file", None
try:
map_html, stats, processed_path = process_excel(file, column)
if map_html and processed_path:
# Create responsive container for the map
responsive_html = f"""
<div style="width:100%; height:70vh; margin:0; padding:0; border:1px solid #e0e0e0; border-radius:8px; overflow:hidden;">
{map_html}
</div>
"""
return responsive_html, stats, processed_path
else:
return None, stats, None
except Exception as e:
import traceback
trace = traceback.format_exc()
print(f"Error in process_and_map: {e}\n{trace}")
return None, f"Error: {str(e)}", None
process_btn.click(
fn=process_and_map,
inputs=[excel_file, places_column],
outputs=[map_output, stats_output, processed_file]
)
# Main app with proper tab separation
with gr.Blocks(css=custom_css, title="Historical Data Analysis") as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 1rem">
<h1>Historical Data Analysis Tools</h1>
<p style="font-size: 1.1rem; margin-top: -10px;">Extract, visualize, and analyze historical data with ease</p>
</div>
""")
with gr.Tabs() as tabs:
with gr.TabItem("🔍 Text Extraction"):
# Instead of duplicating content, use the interface
extraction_interface.render()
with gr.TabItem("📍 Location Mapping"):
# Instead of duplicating content, use the interface
mapping_interface.render()
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #eee; font-size: 0.9rem; color: #666;">
<p>Made with <span style="color: #e25555;">❤</span> for historical data research</p>
</div>
""")
if __name__ == "__main__":
demo.launch() |