File size: 15,138 Bytes
be096d1
3de9a41
 
 
6e9dc4d
 
44e10c6
99101f6
3de9a41
dc6db03
 
3de9a41
 
 
 
be096d1
99101f6
be096d1
3de9a41
 
dc6db03
3de9a41
44e10c6
35509b3
 
99101f6
3de9a41
 
 
 
44e10c6
 
 
 
 
dc6db03
44e10c6
 
dc6db03
44e10c6
 
 
dc6db03
44e10c6
 
 
 
 
 
 
dc6db03
 
44e10c6
 
 
 
 
 
 
 
 
 
 
 
 
 
3de9a41
44e10c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df1519d
44e10c6
 
 
 
3de9a41
44e10c6
 
 
6e9dc4d
44e10c6
 
dc6db03
5c72cc4
44e10c6
 
 
 
 
 
 
 
5c72cc4
44e10c6
dc6db03
 
35509b3
44e10c6
5c72cc4
ff0d30b
992277b
dc6db03
44e10c6
dc6db03
 
 
 
 
 
44e10c6
dc6db03
 
 
 
 
44e10c6
3de9a41
 
 
 
 
 
dc6db03
3de9a41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6db03
44e10c6
ff0d30b
 
99101f6
44e10c6
3de9a41
 
 
 
 
 
 
 
 
 
dc6db03
99101f6
3de9a41
 
 
 
 
44e10c6
3de9a41
 
 
 
 
 
61f85b2
3de9a41
 
 
 
61f85b2
dc6db03
44e10c6
61f85b2
dc6db03
61f85b2
 
3de9a41
61f85b2
44e10c6
3de9a41
dc6db03
 
3de9a41
dc6db03
3de9a41
 
 
 
 
 
 
44e10c6
61f85b2
44e10c6
3de9a41
 
 
 
 
 
44e10c6
3de9a41
 
 
 
44e10c6
3de9a41
 
 
 
 
 
44e10c6
3de9a41
 
 
 
 
 
44e10c6
3de9a41
 
 
 
44e10c6
3de9a41
 
 
 
 
 
44e10c6
3de9a41
 
 
 
 
 
 
 
44e10c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3de9a41
 
 
 
 
 
be096d1
44e10c6
71551a7
44e10c6
 
3de9a41
71551a7
44e10c6
 
ff0d30b
3de9a41
 
 
 
 
be096d1
39ee1aa
44e10c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import gradio as gr
import json
import requests
import os
import pandas as pd
import folium
from folium.plugins import MeasureControl, Fullscreen, MarkerCluster
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
import time
import random
from typing import List, Tuple, Optional
import io
import tempfile
import warnings

warnings.filterwarnings("ignore")

# Map Tile Providers with reliable sources
MAP_TILES = {
    "Toner": {
        "url": "https://tiles.stadiamaps.com/tiles/stamen_toner/{z}/{x}/{y}.png",
        "attr": "Stadia Maps"
    }
}

# NuExtract API configuration
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}

class SafeGeocoder:
    def __init__(self):
        user_agent = f"location_mapper_v1_{random.randint(1000, 9999)}"
        self.geolocator = Nominatim(user_agent=user_agent, timeout=10)
        self.cache = {}
        self.last_request = 0
    
    def _respect_rate_limit(self):
        current_time = time.time()
        elapsed = current_time - self.last_request
        if elapsed < 1.0:
            time.sleep(1.0 - elapsed)
        self.last_request = time.time()
    
    def get_coords(self, location: str):
        if not location or pd.isna(location):
            return None
            
        location = str(location).strip()
        
        if location in self.cache:
            return self.cache[location]
        
        try:
            self._respect_rate_limit()
            result = self.geolocator.geocode(location)
            if result:
                coords = (result.latitude, result.longitude)
                self.cache[location] = coords
                return coords
            self.cache[location] = None
            return None
        except Exception as e:
            print(f"Geocoding error for '{location}': {e}")
            self.cache[location] = None
            return None

# NuExtract Functions
def extract_info(template, text):
    try:
        # Format prompt according to NuExtract-1.5 requirements
        prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
        
        # Call API
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": 1000,
                "do_sample": False
            }
        }
        
        response = requests.post(API_URL, headers=headers, json=payload)
        
        # If the model is loading, inform the user
        if response.status_code == 503:
            response_json = response.json()
            if "error" in response_json and "loading" in response_json["error"]:
                estimated_time = response_json.get("estimated_time", "unknown")
                return f"⏳ Model is loading (ETA: {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unknown'} seconds)", "Please try again in a few minutes"
        
        if response.status_code != 200:
            return f"❌ API Error: {response.status_code}", response.text
        
        # Process result
        result = response.json()
        
        # Handle different response formats
        if isinstance(result, list) and len(result) > 0:
            result_text = result[0].get("generated_text", "")
        else:
            result_text = str(result)
        
        # Split at output marker if present
        if "<|output|>" in result_text:
            json_text = result_text.split("<|output|>")[1].strip()
        else:
            json_text = result_text
        
        # Try to parse as JSON
        try:
            extracted = json.loads(json_text)
            formatted = json.dumps(extracted, indent=2)
        except json.JSONDecodeError:
            return "❌ JSON parsing error", json_text
            
        return "✅ Success", formatted
    except Exception as e:
        return f"❌ Error: {str(e)}", "{}"

def create_map(df, location_col):
    # Initialize map with Toner style
    m = folium.Map(location=[20, 0], zoom_start=2, control_scale=True)
    
    # Add the single tile layer without controls
    folium.TileLayer(
        tiles=MAP_TILES["Toner"]["url"],
        attr=MAP_TILES["Toner"]["attr"],
        name="Toner",
        overlay=False,
        control=False
    ).add_to(m)
    
    # Add plugins
    Fullscreen().add_to(m)
    MeasureControl(position='topright', primary_length_unit='kilometers').add_to(m)
    
    # Process markers
    geocoder = SafeGeocoder()
    coords = []
    marker_cluster = MarkerCluster(name="Locations").add_to(m)
    processed_count = 0
    
    for idx, row in df.iterrows():
        if pd.isna(row[location_col]):
            continue
            
        location = str(row[location_col]).strip()
        
        # Get additional info
        additional_info = ""
        for col in df.columns:
            if col != location_col and not pd.isna(row[col]):
                additional_info += f"<br><b>{col}:</b> {row[col]}"
        
        # Parse locations
        try:
            locations = [loc.strip() for loc in location.split(',') if loc.strip()]
            if not locations:
                locations = [location]
        except:
            locations = [location]
            
        # Process each location
        for loc in locations:
            point = geocoder.get_coords(loc)
            if point:
                popup_content = f"""
                <div style="min-width: 200px; max-width: 300px">
                    <h4 style="font-family: 'Source Sans Pro', sans-serif; margin-bottom: 5px;">{loc}</h4>
                    <div style="font-family: 'Source Sans Pro', sans-serif; font-size: 14px;">
                        {additional_info}
                    </div>
                </div>
                """
                
                folium.Marker(
                    location=point,
                    popup=folium.Popup(popup_content, max_width=300),
                    tooltip=loc,
                    icon=folium.Icon(color="blue", icon="info-sign")
                ).add_to(marker_cluster)
                
                coords.append(point)
                processed_count += 1
    
    # Set bounds
    if coords:
        m.fit_bounds(coords)
    
    # Add custom font CSS
    custom_css = """
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap');
    .leaflet-container {
        font-family: 'Source Sans Pro', sans-serif;
    }
    </style>
    """
    m.get_root().header.add_child(folium.Element(custom_css))
    
    return m._repr_html_(), processed_count

def process_excel(file, places_column):
    if file is None:
        return None, "No file uploaded", None
    
    try:
        # Handle file
        if hasattr(file, 'name'):
            df = pd.read_excel(file.name)
        elif isinstance(file, bytes):
            df = pd.read_excel(io.BytesIO(file))
        else:
            df = pd.read_excel(file)
        
        print(f"Columns in Excel file: {list(df.columns)}")
        
        if places_column not in df.columns:
            return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}", None
        
        # Create map
        map_html, processed_count = create_map(df, places_column)
        
        # Save processed data
        with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
            processed_path = tmp.name
            df.to_excel(processed_path, index=False)
        
        # Stats
        total_locations = df[places_column].count()
        success_rate = (processed_count / total_locations * 100) if total_locations > 0 else 0
        
        stats = f"Found {processed_count} of {total_locations} locations ({success_rate:.1f}%)"
        
        return map_html, stats, processed_path
    except Exception as e:
        import traceback
        trace = traceback.format_exc()
        print(f"Error processing file: {e}\n{trace}")
        return None, f"Error processing file: {str(e)}", None

# Create separate interfaces for each tab to avoid conflicts

# CSS for improved styling
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;600;700&display=swap');

body, .gradio-container {
    font-family: 'Source Sans Pro', sans-serif !important;
    color: #333333;
}

h1 {
    font-weight: 700 !important;
    color: #2c6bb3 !important;
    font-size: 2.5rem !important;
    margin-bottom: 1rem !important;
}

h2 {
    font-weight: 600 !important;
    color: #4e8fd1 !important;
    font-size: 1.5rem !important;
    margin-top: 1rem !important;
    margin-bottom: 0.75rem !important;
}

.gradio-button.primary {
    background-color: #ff7518 !important;
}

.info-box {
    background-color: #e8f4fd;
    border-left: 4px solid #2c6bb3;
    padding: 15px;
    margin: 15px 0;
    border-radius: 4px;
}

.file-upload-box {
    border: 2px dashed #e0e0e0;
    border-radius: 8px;
    padding: 20px;
    text-align: center;
    transition: all 0.3s ease;
}
</style>
"""

# Text Extraction tab as a separate Blocks interface
with gr.Blocks(css=custom_css) as extraction_interface:
    gr.HTML("""
    <div class="info-box">
        <h3 style="margin-top: 0;">Extract Structured Data from Text</h3>
        <p>Use NuExtract-1.5 to automatically extract structured information from historical texts. Define the JSON template for the data you want to extract.</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column():
            template = gr.Textbox(
                label="JSON Template", 
                value='{"earthquake location": "", "dateline location": ""}',
                lines=5
            )
            text = gr.Textbox(
                label="Text to Extract From",
                value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daß in Yokohama bei einem Erdbeben sechs Personen getötet und 22 verwundet, in Tokio vier getötet und 22 verwundet wurden. In Yokohama seien 6VV Häuser zerstört worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind Brände ausgebrochen. Ein Eisenbahnzug stürzte in den Vajugawafluß zwischen Gotemba und Tokio. Sechs Züge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 größere Erdbeben zu verzeichnen gewesen.",
                lines=8
            )
            extract_btn = gr.Button("Extract Information", variant="primary")
        
        with gr.Column():
            status = gr.Textbox(label="Status")
            output = gr.Textbox(label="Output", lines=10)
    
    extract_btn.click(
        fn=extract_info,
        inputs=[template, text],
        outputs=[status, output]
    )

# Mapping tab as a separate Blocks interface
with gr.Blocks(css=custom_css) as mapping_interface:
    gr.HTML("""
    <div class="info-box">
        <h3 style="margin-top: 0;">Map Your Historical Locations</h3>
        <p>Upload an Excel file containing location data to create an interactive map visualization. The tool will geocode your locations and display them on a map.</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column():
            excel_file = gr.File(
                label="Upload Excel File",
                file_types=[".xlsx", ".xls"],
                elem_classes="file-upload-box"
            )
            places_column = gr.Textbox(
                label="Location Column Name",
                value="dateline_locations",
                placeholder="e.g., 'dateline_locations', 'earthquake_locations', or 'place_of_distribution'"
            )
            process_btn = gr.Button("Generate Map", variant="primary")
        
        with gr.Column():
            map_output = gr.HTML(
                label="Interactive Map",
                value="""
                <div style="text-align:center; height:70vh; display:flex; align-items:center; justify-content:center; 
                          background-color:#f5f5f5; border:1px solid #e0e0e0; border-radius:8px;">
                    <div>
                        <img src="https://cdn-icons-png.flaticon.com/512/854/854878.png" width="100">
                        <p style="margin-top:20px; color:#666;">Your map will appear here after processing</p>
                    </div>
                </div>
                """
            )
            stats_output = gr.Textbox(
                label="Location Statistics",
                lines=2
            )
            processed_file = gr.File(
                label="Download Processed Data",
                visible=True,
                interactive=False
            )
    
    def process_and_map(file, column):
        if file is None:
            return None, "Please upload an Excel file", None
        
        try:
            map_html, stats, processed_path = process_excel(file, column)
            
            if map_html and processed_path:
                # Create responsive container for the map
                responsive_html = f"""
                <div style="width:100%; height:70vh; margin:0; padding:0; border:1px solid #e0e0e0; border-radius:8px; overflow:hidden;">
                    {map_html}
                </div>
                """
                return responsive_html, stats, processed_path
            else:
                return None, stats, None
        except Exception as e:
            import traceback
            trace = traceback.format_exc()
            print(f"Error in process_and_map: {e}\n{trace}")
            return None, f"Error: {str(e)}", None
    
    process_btn.click(
        fn=process_and_map,
        inputs=[excel_file, places_column],
        outputs=[map_output, stats_output, processed_file]
    )

# Main app with proper tab separation
with gr.Blocks(css=custom_css, title="Historical Data Analysis") as demo:
    gr.HTML("""
    <div style="text-align: center; margin-bottom: 1rem">
        <h1>Historical Data Analysis Tools</h1>
        <p style="font-size: 1.1rem; margin-top: -10px;">Extract, visualize, and analyze historical data with ease</p>
    </div>
    """)
    
    with gr.Tabs() as tabs:
        with gr.TabItem("🔍 Text Extraction"):
            # Instead of duplicating content, use the interface
            extraction_interface.render()
            
        with gr.TabItem("📍 Location Mapping"):
            # Instead of duplicating content, use the interface
            mapping_interface.render()
    
    gr.HTML("""
    <div style="text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #eee; font-size: 0.9rem; color: #666;">
        <p>Made with <span style="color: #e25555;">❤</span> for historical data research</p>
    </div>
    """)

if __name__ == "__main__":
    demo.launch()