Spaces:
Sleeping
Sleeping
File size: 24,074 Bytes
be096d1 3de9a41 6e9dc4d 3de9a41 99101f6 3de9a41 dc6db03 3de9a41 be096d1 99101f6 be096d1 3de9a41 dc6db03 3de9a41 35509b3 3de9a41 dc6db03 3de9a41 5c72cc4 3de9a41 5c72cc4 3de9a41 dc6db03 3de9a41 dc6db03 3de9a41 dc6db03 3de9a41 35509b3 99101f6 3de9a41 dc6db03 3de9a41 dc6db03 3de9a41 dc6db03 3de9a41 dc6db03 3de9a41 df1519d 3de9a41 dc6db03 3de9a41 6e9dc4d 3de9a41 dc6db03 61f85b2 3de9a41 71551a7 35509b3 dc6db03 5c72cc4 71551a7 3de9a41 5c72cc4 dc6db03 71551a7 dc6db03 5c72cc4 dc6db03 35509b3 61f85b2 5c72cc4 ff0d30b dc6db03 992277b dc6db03 3de9a41 dc6db03 3de9a41 dc6db03 71551a7 ff0d30b dc6db03 ff0d30b 99101f6 dc6db03 5c72cc4 dc6db03 5c72cc4 3de9a41 5c72cc4 3de9a41 dc6db03 99101f6 3de9a41 dc6db03 3de9a41 dc6db03 3de9a41 61f85b2 3de9a41 61f85b2 dc6db03 3de9a41 61f85b2 dc6db03 61f85b2 3de9a41 61f85b2 dc6db03 3de9a41 dc6db03 3de9a41 dc6db03 3de9a41 61f85b2 3de9a41 61f85b2 dc6db03 3de9a41 61f85b2 3de9a41 be096d1 3de9a41 71551a7 3de9a41 71551a7 3de9a41 71551a7 3de9a41 71551a7 3de9a41 71551a7 3de9a41 71551a7 3de9a41 71551a7 3de9a41 71551a7 35509b3 71551a7 3de9a41 71551a7 3de9a41 dc6db03 3de9a41 99101f6 ff0d30b 3de9a41 be096d1 39ee1aa fd03c15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
import gradio as gr
import json
import requests
import os
import pandas as pd
import folium
from folium.plugins import MeasureControl, Fullscreen, MarkerCluster, Search
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
import time
import random
from typing import List, Tuple, Optional
import io
import tempfile
import warnings
warnings.filterwarnings("ignore")
# Map Tile Providers with reliable sources
MAP_TILES = {
"Satellite": {
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}",
"attr": "Esri",
"fallback": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer/tile/{z}/{y}/{x}"
},
"Topographic": {
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer/tile/{z}/{y}/{x}",
"attr": "Esri",
"fallback": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png"
},
"OpenStreetMap": {
"url": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",
"attr": "OpenStreetMap",
"fallback": None
},
"Terrain": {
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Terrain_Base/MapServer/tile/{z}/{y}/{x}",
"attr": "Esri",
"fallback": None
},
"Toner": {
"url": "https://tiles.stadiamaps.com/tiles/stamen_toner/{z}/{x}/{y}.png",
"attr": "Stadia Maps",
"fallback": None
}
}
# NuExtract API configuration
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}
# Geocoding Service
class GeocodingService:
def __init__(self, user_agent: str = None, timeout: int = 10, rate_limit: float = 1.1):
if user_agent is None:
user_agent = f"python_geocoding_script_{random.randint(1000, 9999)}"
self.geolocator = Nominatim(
user_agent=user_agent,
timeout=timeout
)
self.rate_limit = rate_limit
self.last_request = 0
self.cache = {} # Simple in-memory cache
def _rate_limit_wait(self):
current_time = time.time()
time_since_last = current_time - self.last_request
if time_since_last < self.rate_limit:
time.sleep(self.rate_limit - time_since_last)
self.last_request = time.time()
def geocode_location(self, location: str, max_retries: int = 3) -> Optional[Tuple[float, float]]:
# Check cache first
if location in self.cache:
return self.cache[location]
for attempt in range(max_retries):
try:
self._rate_limit_wait()
location_data = self.geolocator.geocode(location)
if location_data:
# Store in cache and return
self.cache[location] = (location_data.latitude, location_data.longitude)
return self.cache[location]
# Cache None results too
self.cache[location] = None
return None
except (GeocoderTimedOut, GeocoderServiceError) as e:
if attempt == max_retries - 1:
print(f"Failed to geocode '{location}' after {max_retries} attempts: {e}")
self.cache[location] = None
return None
time.sleep(2 ** attempt) # Exponential backoff
except Exception as e:
print(f"Error geocoding '{location}': {e}")
self.cache[location] = None
return None
return None
def process_locations(self, locations: str) -> List[Optional[Tuple[float, float]]]:
if pd.isna(locations) or not locations:
return []
try:
# First try to intelligently parse
import re
pattern = r"([^,]+(?:,\s*[A-Za-z]+)?)"
matches = re.findall(pattern, locations)
location_list = [match.strip() for match in matches if match.strip()]
# If regex finds nothing, fall back to simple comma splitting
if not location_list:
location_list = [loc.strip() for loc in locations.split(',') if loc.strip()]
# For debugging
print(f"Parsed '{locations}' into: {location_list}")
return [self.geocode_location(loc) for loc in location_list]
except Exception as e:
print(f"Error parsing locations '{locations}': {e}")
# Fall back to simple method
location_list = [loc.strip() for loc in locations.split(',') if loc.strip()]
return [self.geocode_location(loc) for loc in location_list]
def create_reliable_map(df, location_col):
"""Create a map with multiple layer options and better error handling"""
# Set default tile
default_tile_name = "Toner"
# Initialize map
m = folium.Map(location=[20, 0], zoom_start=2, control_scale=True)
# Add all tile layers with the appropriate one active, but no layer control
for name, config in MAP_TILES.items():
folium.TileLayer(
tiles=config["url"],
attr=f"{config['attr']} ({name})",
name=name,
overlay=False,
control=False, # Disable tile layer in controls
show=(name == default_tile_name) # Only show the default layer initially
).add_to(m)
# Add plugins for better user experience
Fullscreen().add_to(m)
MeasureControl(position='topright', primary_length_unit='kilometers').add_to(m)
# Add markers
geocoder = SafeGeocoder()
coords = []
# Create marker cluster for better performance with many points
marker_cluster = MarkerCluster(name="Locations").add_to(m)
# Process each location
processed_count = 0
for idx, row in df.iterrows():
if pd.isna(row[location_col]):
continue
location = str(row[location_col]).strip()
# Get additional info if available
additional_info = ""
for col in df.columns:
if col != location_col and not pd.isna(row[col]):
additional_info += f"<br><b>{col}:</b> {row[col]}"
# Parse multiple locations if comma-separated
try:
locations = [loc.strip() for loc in location.split(',') if loc.strip()]
if not locations:
locations = [location]
except:
locations = [location]
# Process each location
for loc in locations:
# Geocode location
point = geocoder.get_coords(loc)
if point:
# Create popup content
popup_content = f"""
<div style="min-width: 200px; max-width: 300px">
<h4 style="font-family: 'Source Sans Pro', sans-serif; margin-bottom: 5px;">{loc}</h4>
<div style="font-family: 'Source Sans Pro', sans-serif; font-size: 14px;">
{additional_info}
</div>
</div>
"""
# Add marker
folium.Marker(
location=point,
popup=folium.Popup(popup_content, max_width=300),
tooltip=loc,
icon=folium.Icon(color="blue", icon="info-sign")
).add_to(marker_cluster)
coords.append(point)
processed_count += 1
# Layer control - removed as requested
# folium.LayerControl(collapsed=False).add_to(m)
# Set bounds if we have coordinates
if coords:
m.fit_bounds(coords)
# Add better tile error handling with JavaScript
m.get_root().html.add_child(folium.Element("""
<script>
// Wait for the map to be fully loaded
document.addEventListener('DOMContentLoaded', function() {
setTimeout(function() {
// Get the map instance
var maps = document.querySelectorAll('.leaflet-container');
if (maps.length > 0) {
var map = maps[0];
// Add error handler for tiles
var layers = map.querySelectorAll('.leaflet-tile-pane .leaflet-layer');
for (var i = 0; i < layers.length; i++) {
var layer = layers[i];
var tiles = layer.querySelectorAll('.leaflet-tile');
// Check if layer has no loaded tiles
var loadedTiles = layer.querySelectorAll('.leaflet-tile-loaded');
if (tiles.length > 0 && loadedTiles.length === 0) {
// Force switch to OpenStreetMap if current layer failed
var osmButton = document.querySelector('.leaflet-control-layers-list input[type="radio"]:nth-child(3)');
if (osmButton) {
osmButton.click();
}
console.log("Switched to fallback tile layer due to loading issues");
}
}
}
}, 3000); // Wait 3 seconds for tiles to load
});
</script>
<style>
.leaflet-popup-content {
font-family: 'Source Sans Pro', sans-serif;
}
.leaflet-popup-content h4 {
font-weight: 600;
margin-bottom: 8px;
}
.leaflet-control-layers {
font-family: 'Source Sans Pro', sans-serif;
}
</style>
"""))
# Add custom CSS for better fonts
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap');
.leaflet-container {
font-family: 'Source Sans Pro', sans-serif;
}
</style>
"""
m.get_root().header.add_child(folium.Element(custom_css))
return m._repr_html_(), processed_count
# SafeGeocoder with better error handling
class SafeGeocoder:
def __init__(self):
user_agent = f"location_mapper_v1_{random.randint(1000, 9999)}"
self.geolocator = Nominatim(user_agent=user_agent, timeout=10)
self.cache = {} # Simple cache to avoid repeated requests
self.last_request = 0
def _respect_rate_limit(self):
# Ensure at least 1 second between requests
current_time = time.time()
elapsed = current_time - self.last_request
if elapsed < 1.0:
time.sleep(1.0 - elapsed)
self.last_request = time.time()
def get_coords(self, location: str):
if not location or pd.isna(location):
return None
# Convert to string if needed
location = str(location).strip()
# Check cache first
if location in self.cache:
return self.cache[location]
try:
self._respect_rate_limit()
result = self.geolocator.geocode(location)
if result:
coords = (result.latitude, result.longitude)
self.cache[location] = coords
return coords
self.cache[location] = None
return None
except Exception as e:
print(f"Geocoding error for '{location}': {e}")
self.cache[location] = None
return None
def process_excel(file, places_column):
# Check if file is None
if file is None:
return None, "No file uploaded", None
try:
# Handle various file object types that Gradio might provide
if hasattr(file, 'name'):
# Gradio file object
df = pd.read_excel(file.name)
elif isinstance(file, bytes):
# Raw bytes
df = pd.read_excel(io.BytesIO(file))
else:
# Assume it's a filepath string
df = pd.read_excel(file)
# Print column names for debugging
print(f"Columns in Excel file: {list(df.columns)}")
if places_column not in df.columns:
return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}", None
# Create map
map_html, processed_count = create_reliable_map(df, places_column)
# Save processed data
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
processed_path = tmp.name
df.to_excel(processed_path, index=False)
# Generate stats
total_locations = df[places_column].count()
success_rate = (processed_count / total_locations * 100) if total_locations > 0 else 0
stats = f"Found {processed_count} of {total_locations} locations ({success_rate:.1f}%)"
return map_html, stats, processed_path
except Exception as e:
import traceback
trace = traceback.format_exc()
print(f"Error processing file: {e}\n{trace}")
return None, f"Error processing file: {str(e)}", None
def process_and_map(file, column):
if file is None:
return None, "Please upload an Excel file", None
try:
map_html, stats, processed_path = process_excel(file, column)
if map_html and processed_path:
# Create responsive container for the map
responsive_html = f"""
<div style="width:100%; height:70vh; margin:0; padding:0; border:1px solid #e0e0e0; border-radius:8px; overflow:hidden;">
{map_html}
</div>
"""
return responsive_html, stats, processed_path
else:
return None, stats, None
except Exception as e:
import traceback
trace = traceback.format_exc()
print(f"Error in process_and_map: {e}\n{trace}")
return None, f"Error: {str(e)}", None
# NuExtract Functions
def extract_info(template, text):
try:
# Format prompt according to NuExtract-1.5 requirements
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
# Call API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 1000,
"do_sample": False
}
}
response = requests.post(API_URL, headers=headers, json=payload)
# If the model is loading, inform the user
if response.status_code == 503:
response_json = response.json()
if "error" in response_json and "loading" in response_json["error"]:
estimated_time = response_json.get("estimated_time", "unknown")
return f"⏳ Model is loading (ETA: {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unknown'} seconds)", "Please try again in a few minutes"
if response.status_code != 200:
return f"❌ API Error: {response.status_code}", response.text
# Process result
result = response.json()
# Handle different response formats
try:
if isinstance(result, list):
if len(result) > 0:
result_text = result[0].get("generated_text", "")
else:
return "❌ Empty result list", "{}"
else:
result_text = str(result)
# Split at output marker if present
if "<|output|>" in result_text:
parts = result_text.split("<|output|>")
if len(parts) > 1:
json_text = parts[1].strip()
else:
json_text = result_text
else:
json_text = result_text
# Try to parse as JSON
try:
extracted = json.loads(json_text)
formatted = json.dumps(extracted, indent=2)
except json.JSONDecodeError:
return "❌ JSON parsing error", json_text
return "✅ Success", formatted
except Exception as inner_e:
return f"❌ Error processing result: {str(inner_e)}", "{}"
except Exception as e:
return f"❌ Error: {str(e)}", "{}"
# Custom CSS for improved styling
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;600;700&display=swap');
:root {
--primary-color: #2c6bb3;
--secondary-color: #4e8fd1;
--background-color: #f7f9fc;
--text-color: #333333;
--border-color: #e0e0e0;
}
body, .gradio-container {
font-family: 'Source Sans Pro', sans-serif !important;
background-color: var(--background-color);
color: var(--text-color);
}
h1 {
font-weight: 700 !important;
color: var(--primary-color) !important;
font-size: 2.5rem !important;
margin-bottom: 1rem !important;
}
h2 {
font-weight: 600 !important;
color: var(--secondary-color) !important;
font-size: 1.5rem !important;
margin-top: 1rem !important;
margin-bottom: 0.75rem !important;
}
.gradio-button.primary {
background-color: var(--primary-color) !important;
}
.gradio-button.primary:hover {
background-color: var(--secondary-color) !important;
}
.gradio-tab-nav button {
font-family: 'Source Sans Pro', sans-serif !important;
font-weight: 600 !important;
}
.gradio-tab-nav button.selected {
color: var(--primary-color) !important;
border-color: var(--primary-color) !important;
}
.info-box {
background-color: #e8f4fd;
border-left: 4px solid var(--primary-color);
padding: 15px;
margin: 15px 0;
border-radius: 4px;
}
.stats-box {
background-color: white;
border: 1px solid var(--border-color);
border-radius: 8px;
padding: 15px;
font-size: 1rem;
line-height: 1.5;
}
.subtle-text {
font-size: 0.9rem;
color: #666;
font-style: italic;
}
.file-upload-box {
border: 2px dashed var(--border-color);
border-radius: 8px;
padding: 20px;
text-align: center;
transition: all 0.3s ease;
}
.file-upload-box:hover {
border-color: var(--primary-color);
}
</style>
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 1rem">
<h1>Historical Data Analysis Tools</h1>
<p style="font-size: 1.1rem; margin-top: -10px;">Extract, visualize, and analyze historical data with ease</p>
</div>
""")
with gr.Tabs():
with gr.TabItem("🔍 Text Extraction"):
gr.HTML("""
<div class="info-box">
<h3 style="margin-top: 0;">Extract Structured Data from Text</h3>
<p>Use NuExtract-1.5 to automatically extract structured information from historical texts. Define the JSON template for the data you want to extract.</p>
</div>
""")
with gr.Row():
with gr.Column():
template = gr.Textbox(
label="JSON Template",
value='{"earthquake location": "", "dateline location": ""}',
lines=5,
placeholder="Define the fields you want to extract as a JSON template"
)
text = gr.Textbox(
label="Text to Extract From",
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daß in Yokohama bei einem Erdbeben sechs Personen getötet und 22 verwundet, in Tokio vier getötet und 22 verwundet wurden. In Yokohama seien 6VV Häuser zerstört worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind Brände ausgebrochen. Ein Eisenbahnzug stürzte in den Vajugawafluß zwischen Gotemba und Tokio. Sechs Züge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 größere Erdbeben zu verzeichnen gewesen.",
lines=8,
placeholder="Enter the text you want to extract information from"
)
extract_btn = gr.Button("Extract Information", variant="primary", size="lg")
with gr.Column():
status = gr.Textbox(
label="Status",
elem_classes="stats-box"
)
output = gr.Textbox(
label="Extracted Data",
elem_classes="stats-box",
lines=10
)
extract_btn.click(
fn=extract_info,
inputs=[template, text],
outputs=[status, output]
)
with gr.TabItem("📍 Location Mapping"):
gr.HTML("""
<div class="info-box">
<h3 style="margin-top: 0;">Map Your Historical Locations</h3>
<p>Upload an Excel file containing location data to create an interactive map visualization. The tool will geocode your locations and display them on a customizable map.</p>
</div>
""")
with gr.Row():
with gr.Column():
template = gr.Textbox(
label="JSON Template",
value='{"earthquake location": "", "dateline location": ""}',
lines=5,
placeholder="Define the fields you want to extract as a JSON template"
)
text = gr.Textbox(
label="Text to Extract From",
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daß in Yokohama bei einem Erdbeben sechs Personen getötet und 22 verwundet, in Tokio vier getötet und 22 verwundet wurden. In Yokohama seien 6VV Häuser zerstört worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind Brände ausgebrochen. Ein Eisenbahnzug stürzte in den Vajugawafluß zwischen Gotemba und Tokio. Sechs Züge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 größere Erdbeben zu verzeichnen gewesen.",
lines=8,
placeholder="Enter the text you want to extract information from"
)
extract_btn = gr.Button("Extract Information", variant="primary", size="lg")
with gr.Column():
status = gr.Textbox(
label="Status",
elem_classes="stats-box"
)
output = gr.JSON(
label="Extracted Data",
elem_classes="stats-box"
)
extract_btn.click(
fn=extract_info,
inputs=[template, text],
outputs=[status, output]
)
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #eee; font-size: 0.9rem; color: #666;">
<p>Made with <span style="color: #e25555;">❤</span> for historical data research</p>
</div>
""")
if __name__ == "__main__":
demo.launch() |