HistorySpace / app.py
oberbics's picture
Update app.py
44e10c6 verified
raw
history blame
15.1 kB
import gradio as gr
import json
import requests
import os
import pandas as pd
import folium
from folium.plugins import MeasureControl, Fullscreen, MarkerCluster
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
import time
import random
from typing import List, Tuple, Optional
import io
import tempfile
import warnings
warnings.filterwarnings("ignore")
# Map Tile Providers with reliable sources
MAP_TILES = {
"Toner": {
"url": "https://tiles.stadiamaps.com/tiles/stamen_toner/{z}/{x}/{y}.png",
"attr": "Stadia Maps"
}
}
# NuExtract API configuration
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}
class SafeGeocoder:
def __init__(self):
user_agent = f"location_mapper_v1_{random.randint(1000, 9999)}"
self.geolocator = Nominatim(user_agent=user_agent, timeout=10)
self.cache = {}
self.last_request = 0
def _respect_rate_limit(self):
current_time = time.time()
elapsed = current_time - self.last_request
if elapsed < 1.0:
time.sleep(1.0 - elapsed)
self.last_request = time.time()
def get_coords(self, location: str):
if not location or pd.isna(location):
return None
location = str(location).strip()
if location in self.cache:
return self.cache[location]
try:
self._respect_rate_limit()
result = self.geolocator.geocode(location)
if result:
coords = (result.latitude, result.longitude)
self.cache[location] = coords
return coords
self.cache[location] = None
return None
except Exception as e:
print(f"Geocoding error for '{location}': {e}")
self.cache[location] = None
return None
# NuExtract Functions
def extract_info(template, text):
try:
# Format prompt according to NuExtract-1.5 requirements
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
# Call API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 1000,
"do_sample": False
}
}
response = requests.post(API_URL, headers=headers, json=payload)
# If the model is loading, inform the user
if response.status_code == 503:
response_json = response.json()
if "error" in response_json and "loading" in response_json["error"]:
estimated_time = response_json.get("estimated_time", "unknown")
return f"⏳ Model is loading (ETA: {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unknown'} seconds)", "Please try again in a few minutes"
if response.status_code != 200:
return f"❌ API Error: {response.status_code}", response.text
# Process result
result = response.json()
# Handle different response formats
if isinstance(result, list) and len(result) > 0:
result_text = result[0].get("generated_text", "")
else:
result_text = str(result)
# Split at output marker if present
if "<|output|>" in result_text:
json_text = result_text.split("<|output|>")[1].strip()
else:
json_text = result_text
# Try to parse as JSON
try:
extracted = json.loads(json_text)
formatted = json.dumps(extracted, indent=2)
except json.JSONDecodeError:
return "❌ JSON parsing error", json_text
return "✅ Success", formatted
except Exception as e:
return f"❌ Error: {str(e)}", "{}"
def create_map(df, location_col):
# Initialize map with Toner style
m = folium.Map(location=[20, 0], zoom_start=2, control_scale=True)
# Add the single tile layer without controls
folium.TileLayer(
tiles=MAP_TILES["Toner"]["url"],
attr=MAP_TILES["Toner"]["attr"],
name="Toner",
overlay=False,
control=False
).add_to(m)
# Add plugins
Fullscreen().add_to(m)
MeasureControl(position='topright', primary_length_unit='kilometers').add_to(m)
# Process markers
geocoder = SafeGeocoder()
coords = []
marker_cluster = MarkerCluster(name="Locations").add_to(m)
processed_count = 0
for idx, row in df.iterrows():
if pd.isna(row[location_col]):
continue
location = str(row[location_col]).strip()
# Get additional info
additional_info = ""
for col in df.columns:
if col != location_col and not pd.isna(row[col]):
additional_info += f"<br><b>{col}:</b> {row[col]}"
# Parse locations
try:
locations = [loc.strip() for loc in location.split(',') if loc.strip()]
if not locations:
locations = [location]
except:
locations = [location]
# Process each location
for loc in locations:
point = geocoder.get_coords(loc)
if point:
popup_content = f"""
<div style="min-width: 200px; max-width: 300px">
<h4 style="font-family: 'Source Sans Pro', sans-serif; margin-bottom: 5px;">{loc}</h4>
<div style="font-family: 'Source Sans Pro', sans-serif; font-size: 14px;">
{additional_info}
</div>
</div>
"""
folium.Marker(
location=point,
popup=folium.Popup(popup_content, max_width=300),
tooltip=loc,
icon=folium.Icon(color="blue", icon="info-sign")
).add_to(marker_cluster)
coords.append(point)
processed_count += 1
# Set bounds
if coords:
m.fit_bounds(coords)
# Add custom font CSS
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap');
.leaflet-container {
font-family: 'Source Sans Pro', sans-serif;
}
</style>
"""
m.get_root().header.add_child(folium.Element(custom_css))
return m._repr_html_(), processed_count
def process_excel(file, places_column):
if file is None:
return None, "No file uploaded", None
try:
# Handle file
if hasattr(file, 'name'):
df = pd.read_excel(file.name)
elif isinstance(file, bytes):
df = pd.read_excel(io.BytesIO(file))
else:
df = pd.read_excel(file)
print(f"Columns in Excel file: {list(df.columns)}")
if places_column not in df.columns:
return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}", None
# Create map
map_html, processed_count = create_map(df, places_column)
# Save processed data
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
processed_path = tmp.name
df.to_excel(processed_path, index=False)
# Stats
total_locations = df[places_column].count()
success_rate = (processed_count / total_locations * 100) if total_locations > 0 else 0
stats = f"Found {processed_count} of {total_locations} locations ({success_rate:.1f}%)"
return map_html, stats, processed_path
except Exception as e:
import traceback
trace = traceback.format_exc()
print(f"Error processing file: {e}\n{trace}")
return None, f"Error processing file: {str(e)}", None
# Create separate interfaces for each tab to avoid conflicts
# CSS for improved styling
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;600;700&display=swap');
body, .gradio-container {
font-family: 'Source Sans Pro', sans-serif !important;
color: #333333;
}
h1 {
font-weight: 700 !important;
color: #2c6bb3 !important;
font-size: 2.5rem !important;
margin-bottom: 1rem !important;
}
h2 {
font-weight: 600 !important;
color: #4e8fd1 !important;
font-size: 1.5rem !important;
margin-top: 1rem !important;
margin-bottom: 0.75rem !important;
}
.gradio-button.primary {
background-color: #ff7518 !important;
}
.info-box {
background-color: #e8f4fd;
border-left: 4px solid #2c6bb3;
padding: 15px;
margin: 15px 0;
border-radius: 4px;
}
.file-upload-box {
border: 2px dashed #e0e0e0;
border-radius: 8px;
padding: 20px;
text-align: center;
transition: all 0.3s ease;
}
</style>
"""
# Text Extraction tab as a separate Blocks interface
with gr.Blocks(css=custom_css) as extraction_interface:
gr.HTML("""
<div class="info-box">
<h3 style="margin-top: 0;">Extract Structured Data from Text</h3>
<p>Use NuExtract-1.5 to automatically extract structured information from historical texts. Define the JSON template for the data you want to extract.</p>
</div>
""")
with gr.Row():
with gr.Column():
template = gr.Textbox(
label="JSON Template",
value='{"earthquake location": "", "dateline location": ""}',
lines=5
)
text = gr.Textbox(
label="Text to Extract From",
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daß in Yokohama bei einem Erdbeben sechs Personen getötet und 22 verwundet, in Tokio vier getötet und 22 verwundet wurden. In Yokohama seien 6VV Häuser zerstört worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind Brände ausgebrochen. Ein Eisenbahnzug stürzte in den Vajugawafluß zwischen Gotemba und Tokio. Sechs Züge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 größere Erdbeben zu verzeichnen gewesen.",
lines=8
)
extract_btn = gr.Button("Extract Information", variant="primary")
with gr.Column():
status = gr.Textbox(label="Status")
output = gr.Textbox(label="Output", lines=10)
extract_btn.click(
fn=extract_info,
inputs=[template, text],
outputs=[status, output]
)
# Mapping tab as a separate Blocks interface
with gr.Blocks(css=custom_css) as mapping_interface:
gr.HTML("""
<div class="info-box">
<h3 style="margin-top: 0;">Map Your Historical Locations</h3>
<p>Upload an Excel file containing location data to create an interactive map visualization. The tool will geocode your locations and display them on a map.</p>
</div>
""")
with gr.Row():
with gr.Column():
excel_file = gr.File(
label="Upload Excel File",
file_types=[".xlsx", ".xls"],
elem_classes="file-upload-box"
)
places_column = gr.Textbox(
label="Location Column Name",
value="dateline_locations",
placeholder="e.g., 'dateline_locations', 'earthquake_locations', or 'place_of_distribution'"
)
process_btn = gr.Button("Generate Map", variant="primary")
with gr.Column():
map_output = gr.HTML(
label="Interactive Map",
value="""
<div style="text-align:center; height:70vh; display:flex; align-items:center; justify-content:center;
background-color:#f5f5f5; border:1px solid #e0e0e0; border-radius:8px;">
<div>
<img src="https://cdn-icons-png.flaticon.com/512/854/854878.png" width="100">
<p style="margin-top:20px; color:#666;">Your map will appear here after processing</p>
</div>
</div>
"""
)
stats_output = gr.Textbox(
label="Location Statistics",
lines=2
)
processed_file = gr.File(
label="Download Processed Data",
visible=True,
interactive=False
)
def process_and_map(file, column):
if file is None:
return None, "Please upload an Excel file", None
try:
map_html, stats, processed_path = process_excel(file, column)
if map_html and processed_path:
# Create responsive container for the map
responsive_html = f"""
<div style="width:100%; height:70vh; margin:0; padding:0; border:1px solid #e0e0e0; border-radius:8px; overflow:hidden;">
{map_html}
</div>
"""
return responsive_html, stats, processed_path
else:
return None, stats, None
except Exception as e:
import traceback
trace = traceback.format_exc()
print(f"Error in process_and_map: {e}\n{trace}")
return None, f"Error: {str(e)}", None
process_btn.click(
fn=process_and_map,
inputs=[excel_file, places_column],
outputs=[map_output, stats_output, processed_file]
)
# Main app with proper tab separation
with gr.Blocks(css=custom_css, title="Historical Data Analysis") as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 1rem">
<h1>Historical Data Analysis Tools</h1>
<p style="font-size: 1.1rem; margin-top: -10px;">Extract, visualize, and analyze historical data with ease</p>
</div>
""")
with gr.Tabs() as tabs:
with gr.TabItem("🔍 Text Extraction"):
# Instead of duplicating content, use the interface
extraction_interface.render()
with gr.TabItem("📍 Location Mapping"):
# Instead of duplicating content, use the interface
mapping_interface.render()
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #eee; font-size: 0.9rem; color: #666;">
<p>Made with <span style="color: #e25555;">❤</span> for historical data research</p>
</div>
""")
if __name__ == "__main__":
demo.launch()