Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import requests | |
import os | |
import pandas as pd | |
import folium | |
from folium.plugins import MeasureControl, Fullscreen, MarkerCluster, Search | |
from geopy.geocoders import Nominatim | |
from geopy.exc import GeocoderTimedOut, GeocoderServiceError | |
import time | |
import random | |
from typing import List, Tuple, Optional | |
import io | |
import tempfile | |
import warnings | |
warnings.filterwarnings("ignore") | |
# Map Tile Providers with reliable sources | |
MAP_TILES = { | |
"Satellite": { | |
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}", | |
"attr": "Esri", | |
"fallback": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer/tile/{z}/{y}/{x}" | |
}, | |
"Topographic": { | |
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer/tile/{z}/{y}/{x}", | |
"attr": "Esri", | |
"fallback": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png" | |
}, | |
"OpenStreetMap": { | |
"url": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png", | |
"attr": "OpenStreetMap", | |
"fallback": None | |
}, | |
"Terrain": { | |
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Terrain_Base/MapServer/tile/{z}/{y}/{x}", | |
"attr": "Esri", | |
"fallback": None | |
}, | |
"Toner": { | |
"url": "https://tiles.stadiamaps.com/tiles/stamen_toner/{z}/{x}/{y}.png", | |
"attr": "Stadia Maps", | |
"fallback": None | |
} | |
} | |
# NuExtract API configuration | |
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5" | |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"} | |
# Geocoding Service | |
class GeocodingService: | |
def __init__(self, user_agent: str = None, timeout: int = 10, rate_limit: float = 1.1): | |
if user_agent is None: | |
user_agent = f"python_geocoding_script_{random.randint(1000, 9999)}" | |
self.geolocator = Nominatim( | |
user_agent=user_agent, | |
timeout=timeout | |
) | |
self.rate_limit = rate_limit | |
self.last_request = 0 | |
self.cache = {} # Simple in-memory cache | |
def _rate_limit_wait(self): | |
current_time = time.time() | |
time_since_last = current_time - self.last_request | |
if time_since_last < self.rate_limit: | |
time.sleep(self.rate_limit - time_since_last) | |
self.last_request = time.time() | |
def geocode_location(self, location: str, max_retries: int = 3) -> Optional[Tuple[float, float]]: | |
# Check cache first | |
if location in self.cache: | |
return self.cache[location] | |
for attempt in range(max_retries): | |
try: | |
self._rate_limit_wait() | |
location_data = self.geolocator.geocode(location) | |
if location_data: | |
# Store in cache and return | |
self.cache[location] = (location_data.latitude, location_data.longitude) | |
return self.cache[location] | |
# Cache None results too | |
self.cache[location] = None | |
return None | |
except (GeocoderTimedOut, GeocoderServiceError) as e: | |
if attempt == max_retries - 1: | |
print(f"Failed to geocode '{location}' after {max_retries} attempts: {e}") | |
self.cache[location] = None | |
return None | |
time.sleep(2 ** attempt) # Exponential backoff | |
except Exception as e: | |
print(f"Error geocoding '{location}': {e}") | |
self.cache[location] = None | |
return None | |
return None | |
def process_locations(self, locations: str) -> List[Optional[Tuple[float, float]]]: | |
if pd.isna(locations) or not locations: | |
return [] | |
try: | |
# First try to intelligently parse | |
import re | |
pattern = r"([^,]+(?:,\s*[A-Za-z]+)?)" | |
matches = re.findall(pattern, locations) | |
location_list = [match.strip() for match in matches if match.strip()] | |
# If regex finds nothing, fall back to simple comma splitting | |
if not location_list: | |
location_list = [loc.strip() for loc in locations.split(',') if loc.strip()] | |
# For debugging | |
print(f"Parsed '{locations}' into: {location_list}") | |
return [self.geocode_location(loc) for loc in location_list] | |
except Exception as e: | |
print(f"Error parsing locations '{locations}': {e}") | |
# Fall back to simple method | |
location_list = [loc.strip() for loc in locations.split(',') if loc.strip()] | |
return [self.geocode_location(loc) for loc in location_list] | |
def create_reliable_map(df, location_col): | |
"""Create a map with multiple layer options and better error handling""" | |
# Set default tile | |
default_tile_name = "Toner" | |
# Initialize map | |
m = folium.Map(location=[20, 0], zoom_start=2, control_scale=True) | |
# Add all tile layers with the appropriate one active, but no layer control | |
for name, config in MAP_TILES.items(): | |
folium.TileLayer( | |
tiles=config["url"], | |
attr=f"{config['attr']} ({name})", | |
name=name, | |
overlay=False, | |
control=False, # Disable tile layer in controls | |
show=(name == default_tile_name) # Only show the default layer initially | |
).add_to(m) | |
# Add plugins for better user experience | |
Fullscreen().add_to(m) | |
MeasureControl(position='topright', primary_length_unit='kilometers').add_to(m) | |
# Add markers | |
geocoder = SafeGeocoder() | |
coords = [] | |
# Create marker cluster for better performance with many points | |
marker_cluster = MarkerCluster(name="Locations").add_to(m) | |
# Process each location | |
processed_count = 0 | |
for idx, row in df.iterrows(): | |
if pd.isna(row[location_col]): | |
continue | |
location = str(row[location_col]).strip() | |
# Get additional info if available | |
additional_info = "" | |
for col in df.columns: | |
if col != location_col and not pd.isna(row[col]): | |
additional_info += f"<br><b>{col}:</b> {row[col]}" | |
# Parse multiple locations if comma-separated | |
try: | |
locations = [loc.strip() for loc in location.split(',') if loc.strip()] | |
if not locations: | |
locations = [location] | |
except: | |
locations = [location] | |
# Process each location | |
for loc in locations: | |
# Geocode location | |
point = geocoder.get_coords(loc) | |
if point: | |
# Create popup content | |
popup_content = f""" | |
<div style="min-width: 200px; max-width: 300px"> | |
<h4 style="font-family: 'Source Sans Pro', sans-serif; margin-bottom: 5px;">{loc}</h4> | |
<div style="font-family: 'Source Sans Pro', sans-serif; font-size: 14px;"> | |
{additional_info} | |
</div> | |
</div> | |
""" | |
# Add marker | |
folium.Marker( | |
location=point, | |
popup=folium.Popup(popup_content, max_width=300), | |
tooltip=loc, | |
icon=folium.Icon(color="blue", icon="info-sign") | |
).add_to(marker_cluster) | |
coords.append(point) | |
processed_count += 1 | |
# Layer control - removed as requested | |
# folium.LayerControl(collapsed=False).add_to(m) | |
# Set bounds if we have coordinates | |
if coords: | |
m.fit_bounds(coords) | |
# Add better tile error handling with JavaScript | |
m.get_root().html.add_child(folium.Element(""" | |
<script> | |
// Wait for the map to be fully loaded | |
document.addEventListener('DOMContentLoaded', function() { | |
setTimeout(function() { | |
// Get the map instance | |
var maps = document.querySelectorAll('.leaflet-container'); | |
if (maps.length > 0) { | |
var map = maps[0]; | |
// Add error handler for tiles | |
var layers = map.querySelectorAll('.leaflet-tile-pane .leaflet-layer'); | |
for (var i = 0; i < layers.length; i++) { | |
var layer = layers[i]; | |
var tiles = layer.querySelectorAll('.leaflet-tile'); | |
// Check if layer has no loaded tiles | |
var loadedTiles = layer.querySelectorAll('.leaflet-tile-loaded'); | |
if (tiles.length > 0 && loadedTiles.length === 0) { | |
// Force switch to OpenStreetMap if current layer failed | |
var osmButton = document.querySelector('.leaflet-control-layers-list input[type="radio"]:nth-child(3)'); | |
if (osmButton) { | |
osmButton.click(); | |
} | |
console.log("Switched to fallback tile layer due to loading issues"); | |
} | |
} | |
} | |
}, 3000); // Wait 3 seconds for tiles to load | |
}); | |
</script> | |
<style> | |
.leaflet-popup-content { | |
font-family: 'Source Sans Pro', sans-serif; | |
} | |
.leaflet-popup-content h4 { | |
font-weight: 600; | |
margin-bottom: 8px; | |
} | |
.leaflet-control-layers { | |
font-family: 'Source Sans Pro', sans-serif; | |
} | |
</style> | |
""")) | |
# Add custom CSS for better fonts | |
custom_css = """ | |
<style> | |
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap'); | |
.leaflet-container { | |
font-family: 'Source Sans Pro', sans-serif; | |
} | |
</style> | |
""" | |
m.get_root().header.add_child(folium.Element(custom_css)) | |
return m._repr_html_(), processed_count | |
# SafeGeocoder with better error handling | |
class SafeGeocoder: | |
def __init__(self): | |
user_agent = f"location_mapper_v1_{random.randint(1000, 9999)}" | |
self.geolocator = Nominatim(user_agent=user_agent, timeout=10) | |
self.cache = {} # Simple cache to avoid repeated requests | |
self.last_request = 0 | |
def _respect_rate_limit(self): | |
# Ensure at least 1 second between requests | |
current_time = time.time() | |
elapsed = current_time - self.last_request | |
if elapsed < 1.0: | |
time.sleep(1.0 - elapsed) | |
self.last_request = time.time() | |
def get_coords(self, location: str): | |
if not location or pd.isna(location): | |
return None | |
# Convert to string if needed | |
location = str(location).strip() | |
# Check cache first | |
if location in self.cache: | |
return self.cache[location] | |
try: | |
self._respect_rate_limit() | |
result = self.geolocator.geocode(location) | |
if result: | |
coords = (result.latitude, result.longitude) | |
self.cache[location] = coords | |
return coords | |
self.cache[location] = None | |
return None | |
except Exception as e: | |
print(f"Geocoding error for '{location}': {e}") | |
self.cache[location] = None | |
return None | |
def process_excel(file, places_column): | |
# Check if file is None | |
if file is None: | |
return None, "No file uploaded", None | |
try: | |
# Handle various file object types that Gradio might provide | |
if hasattr(file, 'name'): | |
# Gradio file object | |
df = pd.read_excel(file.name) | |
elif isinstance(file, bytes): | |
# Raw bytes | |
df = pd.read_excel(io.BytesIO(file)) | |
else: | |
# Assume it's a filepath string | |
df = pd.read_excel(file) | |
# Print column names for debugging | |
print(f"Columns in Excel file: {list(df.columns)}") | |
if places_column not in df.columns: | |
return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}", None | |
# Create map | |
map_html, processed_count = create_reliable_map(df, places_column) | |
# Save processed data | |
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp: | |
processed_path = tmp.name | |
df.to_excel(processed_path, index=False) | |
# Generate stats | |
total_locations = df[places_column].count() | |
success_rate = (processed_count / total_locations * 100) if total_locations > 0 else 0 | |
stats = f"Found {processed_count} of {total_locations} locations ({success_rate:.1f}%)" | |
return map_html, stats, processed_path | |
except Exception as e: | |
import traceback | |
trace = traceback.format_exc() | |
print(f"Error processing file: {e}\n{trace}") | |
return None, f"Error processing file: {str(e)}", None | |
def process_and_map(file, column): | |
if file is None: | |
return None, "Please upload an Excel file", None | |
try: | |
map_html, stats, processed_path = process_excel(file, column) | |
if map_html and processed_path: | |
# Create responsive container for the map | |
responsive_html = f""" | |
<div style="width:100%; height:70vh; margin:0; padding:0; border:1px solid #e0e0e0; border-radius:8px; overflow:hidden;"> | |
{map_html} | |
</div> | |
""" | |
return responsive_html, stats, processed_path | |
else: | |
return None, stats, None | |
except Exception as e: | |
import traceback | |
trace = traceback.format_exc() | |
print(f"Error in process_and_map: {e}\n{trace}") | |
return None, f"Error: {str(e)}", None | |
# NuExtract Functions | |
def extract_info(template, text): | |
try: | |
# Format prompt according to NuExtract-1.5 requirements | |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>" | |
# Call API | |
payload = { | |
"inputs": prompt, | |
"parameters": { | |
"max_new_tokens": 1000, | |
"do_sample": False | |
} | |
} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
# If the model is loading, inform the user | |
if response.status_code == 503: | |
response_json = response.json() | |
if "error" in response_json and "loading" in response_json["error"]: | |
estimated_time = response_json.get("estimated_time", "unknown") | |
return f"⏳ Model is loading (ETA: {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unknown'} seconds)", "Please try again in a few minutes" | |
if response.status_code != 200: | |
return f"❌ API Error: {response.status_code}", response.text | |
# Process result | |
result = response.json() | |
# Handle different response formats | |
try: | |
if isinstance(result, list): | |
if len(result) > 0: | |
result_text = result[0].get("generated_text", "") | |
else: | |
return "❌ Empty result list", "{}" | |
else: | |
result_text = str(result) | |
# Split at output marker if present | |
if "<|output|>" in result_text: | |
parts = result_text.split("<|output|>") | |
if len(parts) > 1: | |
json_text = parts[1].strip() | |
else: | |
json_text = result_text | |
else: | |
json_text = result_text | |
# Try to parse as JSON | |
try: | |
extracted = json.loads(json_text) | |
formatted = json.dumps(extracted, indent=2) | |
except json.JSONDecodeError: | |
return "❌ JSON parsing error", json_text | |
return "✅ Success", formatted | |
except Exception as inner_e: | |
return f"❌ Error processing result: {str(inner_e)}", "{}" | |
except Exception as e: | |
return f"❌ Error: {str(e)}", "{}" | |
# Custom CSS for improved styling | |
custom_css = """ | |
<style> | |
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;600;700&display=swap'); | |
:root { | |
--primary-color: #2c6bb3; | |
--secondary-color: #4e8fd1; | |
--background-color: #f7f9fc; | |
--text-color: #333333; | |
--border-color: #e0e0e0; | |
} | |
body, .gradio-container { | |
font-family: 'Source Sans Pro', sans-serif !important; | |
background-color: var(--background-color); | |
color: var(--text-color); | |
} | |
h1 { | |
font-weight: 700 !important; | |
color: var(--primary-color) !important; | |
font-size: 2.5rem !important; | |
margin-bottom: 1rem !important; | |
} | |
h2 { | |
font-weight: 600 !important; | |
color: var(--secondary-color) !important; | |
font-size: 1.5rem !important; | |
margin-top: 1rem !important; | |
margin-bottom: 0.75rem !important; | |
} | |
.gradio-button.primary { | |
background-color: var(--primary-color) !important; | |
} | |
.gradio-button.primary:hover { | |
background-color: var(--secondary-color) !important; | |
} | |
.gradio-tab-nav button { | |
font-family: 'Source Sans Pro', sans-serif !important; | |
font-weight: 600 !important; | |
} | |
.gradio-tab-nav button.selected { | |
color: var(--primary-color) !important; | |
border-color: var(--primary-color) !important; | |
} | |
.info-box { | |
background-color: #e8f4fd; | |
border-left: 4px solid var(--primary-color); | |
padding: 15px; | |
margin: 15px 0; | |
border-radius: 4px; | |
} | |
.stats-box { | |
background-color: white; | |
border: 1px solid var(--border-color); | |
border-radius: 8px; | |
padding: 15px; | |
font-size: 1rem; | |
line-height: 1.5; | |
} | |
.subtle-text { | |
font-size: 0.9rem; | |
color: #666; | |
font-style: italic; | |
} | |
.file-upload-box { | |
border: 2px dashed var(--border-color); | |
border-radius: 8px; | |
padding: 20px; | |
text-align: center; | |
transition: all 0.3s ease; | |
} | |
.file-upload-box:hover { | |
border-color: var(--primary-color); | |
} | |
</style> | |
""" | |
# Create the Gradio interface | |
with gr.Blocks(css=custom_css) as demo: | |
gr.HTML(""" | |
<div style="text-align: center; margin-bottom: 1rem"> | |
<h1>Historical Data Analysis Tools</h1> | |
<p style="font-size: 1.1rem; margin-top: -10px;">Extract, visualize, and analyze historical data with ease</p> | |
</div> | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("🔍 Text Extraction"): | |
gr.HTML(""" | |
<div class="info-box"> | |
<h3 style="margin-top: 0;">Extract Structured Data from Text</h3> | |
<p>Use NuExtract-1.5 to automatically extract structured information from historical texts. Define the JSON template for the data you want to extract.</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
template = gr.Textbox( | |
label="JSON Template", | |
value='{"earthquake location": "", "dateline location": ""}', | |
lines=5, | |
placeholder="Define the fields you want to extract as a JSON template" | |
) | |
text = gr.Textbox( | |
label="Text to Extract From", | |
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daß in Yokohama bei einem Erdbeben sechs Personen getötet und 22 verwundet, in Tokio vier getötet und 22 verwundet wurden. In Yokohama seien 6VV Häuser zerstört worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind Brände ausgebrochen. Ein Eisenbahnzug stürzte in den Vajugawafluß zwischen Gotemba und Tokio. Sechs Züge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 größere Erdbeben zu verzeichnen gewesen.", | |
lines=8, | |
placeholder="Enter the text you want to extract information from" | |
) | |
extract_btn = gr.Button("Extract Information", variant="primary", size="lg") | |
with gr.Column(): | |
status = gr.Textbox( | |
label="Status", | |
elem_classes="stats-box" | |
) | |
output = gr.Textbox( | |
label="Extracted Data", | |
elem_classes="stats-box", | |
lines=10 | |
) | |
extract_btn.click( | |
fn=extract_info, | |
inputs=[template, text], | |
outputs=[status, output] | |
) | |
with gr.TabItem("📍 Location Mapping"): | |
gr.HTML(""" | |
<div class="info-box"> | |
<h3 style="margin-top: 0;">Map Your Historical Locations</h3> | |
<p>Upload an Excel file containing location data to create an interactive map visualization. The tool will geocode your locations and display them on a customizable map.</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
template = gr.Textbox( | |
label="JSON Template", | |
value='{"earthquake location": "", "dateline location": ""}', | |
lines=5, | |
placeholder="Define the fields you want to extract as a JSON template" | |
) | |
text = gr.Textbox( | |
label="Text to Extract From", | |
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daß in Yokohama bei einem Erdbeben sechs Personen getötet und 22 verwundet, in Tokio vier getötet und 22 verwundet wurden. In Yokohama seien 6VV Häuser zerstört worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind Brände ausgebrochen. Ein Eisenbahnzug stürzte in den Vajugawafluß zwischen Gotemba und Tokio. Sechs Züge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 größere Erdbeben zu verzeichnen gewesen.", | |
lines=8, | |
placeholder="Enter the text you want to extract information from" | |
) | |
extract_btn = gr.Button("Extract Information", variant="primary", size="lg") | |
with gr.Column(): | |
status = gr.Textbox( | |
label="Status", | |
elem_classes="stats-box" | |
) | |
output = gr.JSON( | |
label="Extracted Data", | |
elem_classes="stats-box" | |
) | |
extract_btn.click( | |
fn=extract_info, | |
inputs=[template, text], | |
outputs=[status, output] | |
) | |
gr.HTML(""" | |
<div style="text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #eee; font-size: 0.9rem; color: #666;"> | |
<p>Made with <span style="color: #e25555;">❤</span> for historical data research</p> | |
</div> | |
""") | |
if __name__ == "__main__": | |
demo.launch() |