File size: 6,867 Bytes
9762129
dc2c5df
 
 
 
28b240b
dc2c5df
 
28b240b
dc2c5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9762129
dc2c5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9762129
 
dc2c5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9762129
28b240b
 
9762129
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import json
import re
import os
import spacy
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
import gradio as gr
from huggingface_hub import Repository
from datetime import datetime 

nlp = spacy.load("en_core_web_sm")

qg_model = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-base-qa-qg-hl")
qg_tokenizer = AutoTokenizer.from_pretrained("valhalla/t5-base-qa-qg-hl", use_fast=True)
qg_pipeline = pipeline("text2text-generation", model=qg_model, tokenizer=qg_tokenizer)

def extract_paragraph_facts(raw_text):
    return [p.strip() for p in raw_text.strip().split("\n\n") if p.strip()]

def extract_noun_phrases(text):
    doc = nlp(text)
    return [np.text for np in doc.noun_chunks]

def auto_highlight_noun_phrase(text):
    doc = nlp(text)
    noun_phrases = sorted(doc.noun_chunks, key=lambda np: len(np.text), reverse=True)
    for np in noun_phrases:
        if len(np.text.split()) > 1 or np.root.pos_ == "NOUN":
            return np.text
    return text

def highlight_selected_phrase(fact, selected_np):
    return fact.replace(selected_np, f"<hl>{selected_np}<hl>", 1)

def generate_single_qna(fact, noun_phrase, min_len, max_len, temperature, top_k, top_p):
    hl_fact = highlight_selected_phrase(fact, noun_phrase)
    try:
        prompt = f"generate question: {hl_fact}"
        output = qg_pipeline(
            prompt,
            min_length=min_len,
            max_length=max_len,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            do_sample=True
        )[0]
        question = output.get("generated_text", "").strip()
        if not question.endswith("?"):
            question += "?"
    except Exception as e:
        question = f"Error generating question: {str(e)}"

    return {"question": question, "answer": fact}

def generate_qna_all(input_text, selected_fact, selected_np, min_len, max_len, temperature, top_k, top_p):
    facts = extract_paragraph_facts(input_text)
    results = []

    if selected_fact:
        noun_phrase = selected_np if selected_np else auto_highlight_noun_phrase(selected_fact)
        result = generate_single_qna(selected_fact, noun_phrase, min_len, max_len, temperature, top_k, top_p)
        results.append(result)
    else:
        for fact in facts:
            noun_phrase = auto_highlight_noun_phrase(fact)
            result = generate_single_qna(fact, noun_phrase, min_len, max_len, temperature, top_k, top_p)
            results.append(result)

    return json.dumps(results, indent=2, ensure_ascii=False)

def save_json_to_dataset(json_str):
    try:
        hf_token = os.environ.get("QandA_Generator")
        if not hf_token:
            return "❌ HF_TOKEN not found in environment."

        repo_id = "University_Inquiries_AI_Chatbot"
        dataset_file = "dataset.json"
        local_dir = "hf_repo"

        repo = Repository(
            local_dir=local_dir,
            clone_from=f"datasets/{repo_id}",
            use_auth_token=hf_token
        )
        repo.git_pull()

        full_path = os.path.join(local_dir, dataset_file)

        if os.path.exists(full_path):
            with open(full_path, "r", encoding="utf-8") as f:
                existing_data = json.load(f)
        else:
            existing_data = []

        new_data = json.loads(json_str)

        now = datetime.now()
        for entry in new_data:
            entry["month"] = now.strftime("%B") 
            entry["year"] = now.year            

        updated_data = existing_data + new_data

        with open(full_path, "w", encoding="utf-8") as f:
            json.dump(updated_data, f, indent=2, ensure_ascii=False)

        repo.push_to_hub(commit_message="πŸ“₯ Add new Q&A with timestamp")

        return "βœ… Data with timestamp successfully pushed to HF dataset!"
    except Exception as e:
        return f"❌ Error: {str(e)}"


def on_extract_facts(text):
    facts = extract_paragraph_facts(text)
    default_fact = facts[0] if facts else None
    return gr.update(choices=facts, value=default_fact), gr.update(choices=[], value=None)

def on_select_fact(fact):
    noun_phrases = extract_noun_phrases(fact)
    return gr.update(choices=noun_phrases, value=noun_phrases[0] if noun_phrases else None)

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## Paragraph-to-Question Generator (Auto Q&A for HF Dataset)")

        input_text = gr.Textbox(lines=10, label="Enter Data (Seperated by paragraph per question)")

        with gr.Accordion("βš™οΈ Customize Question Generation", open=False):
            extract_btn = gr.Button("Extract & Customize")
            fact_dropdown = gr.Dropdown(label="Select a Fact", interactive=True)
            np_dropdown = gr.Dropdown(label="Select Noun Phrase to Highlight (optional)", interactive=True)

            extract_btn.click(fn=on_extract_facts, inputs=input_text, outputs=[fact_dropdown, np_dropdown])
            fact_dropdown.change(fn=on_select_fact, inputs=fact_dropdown, outputs=np_dropdown)

            gr.Markdown("πŸ”½ **Min Length**: Minimum number of tokens in the generated question.")
            min_len = gr.Slider(5, 50, value=10, step=1, label="Min Length")

            gr.Markdown("πŸ”Ό **Max Length**: Maximum number of tokens in the generated question.")
            max_len = gr.Slider(20, 100, value=64, step=1, label="Max Length")

            gr.Markdown("🌑️ **Temperature**: Controls randomness. Lower = more predictable, higher = more creative.")
            temperature = gr.Slider(0.1, 1.5, value=1.0, step=0.1, label="Temperature")

            gr.Markdown("🎯 **Top-k Sampling**: Limits sampling to the top-k most likely words.")
            top_k = gr.Slider(0, 100, value=50, step=1, label="Top-k")

            gr.Markdown("🎲 **Top-p (Nucleus Sampling)**: Selects from the smallest set of words with a cumulative probability > p.")
            top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")

        gr.Markdown("✏️ You can manually edit the generated JSON here or paste your own in the same format.")
        output_json = gr.Textbox(
            lines=14,
            label="Q&A JSON",
            interactive=True,
            placeholder='{\n"question": "Your question?",\n"answer": "Your answer."\n},'
        )


        with gr.Row():
            generate_btn = gr.Button("Generate Q&A")
            send_btn = gr.Button("πŸ“€ Send to Dataset")

        generate_btn.click(
            fn=generate_qna_all,
            inputs=[input_text, fact_dropdown, np_dropdown, min_len, max_len, temperature, top_k, top_p],
            outputs=output_json
        )

        send_status = gr.Textbox(label="Save Status", interactive=False)
        send_btn.click(fn=save_json_to_dataset, inputs=output_json, outputs=send_status)

    demo.launch()

if __name__ == "__main__":
    main()