ogegadavis254 commited on
Commit
c1cf6d8
·
verified ·
1 Parent(s): 0efa70b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -33
app.py CHANGED
@@ -38,10 +38,7 @@ def call_ai_model(all_message):
38
  def get_performance_data(conditions):
39
  all_message = (
40
  f"Provide the expected sports performance score at conditions: "
41
- f"Temperature {conditions['temperature']}°C, Humidity {conditions['humidity']}%, "
42
- f"Wind Speed {conditions['wind_speed']} km/h, UV Index {conditions['uv_index']}, "
43
- f"Air Quality Index {conditions['air_quality_index']}, Precipitation {conditions['precipitation']} mm, "
44
- f"Atmospheric Pressure {conditions['atmospheric_pressure']} hPa."
45
  )
46
  response = call_ai_model(all_message)
47
  generated_text = ""
@@ -65,38 +62,23 @@ def get_performance_data(conditions):
65
 
66
  # Streamlit app layout
67
  st.title("Climate Impact on Sports Performance")
68
- st.write("Analyze and visualize the impact of climate conditions on sports performance.")
69
 
70
- # Inputs for climate conditions
71
  temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
72
- humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
73
- wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
74
- uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
75
- air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
76
- precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
77
- atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
78
 
79
  # Button to generate predictions
80
  if st.button("Generate Prediction"):
81
  conditions = {
82
- "temperature": temperature,
83
- "humidity": humidity,
84
- "wind_speed": wind_speed,
85
- "uv_index": uv_index,
86
- "air_quality_index": air_quality_index,
87
- "precipitation": precipitation,
88
- "atmospheric_pressure": atmospheric_pressure
89
  }
90
 
91
  try:
92
  with st.spinner("Generating predictions..."):
93
  # Call AI model to get qualitative analysis
94
  qualitative_analysis = (
95
- f"Assess the impact on sports performance at conditions: "
96
- f"Temperature {temperature}°C, Humidity {humidity}%, "
97
- f"Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
98
- f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, "
99
- f"Atmospheric Pressure {atmospheric_pressure} hPa."
100
  )
101
  qualitative_result = call_ai_model(qualitative_analysis)
102
 
@@ -114,18 +96,14 @@ if st.button("Generate Prediction"):
114
  st.write(f"Predicted Performance Scores: {performance_scores}")
115
 
116
  # Plotting the data
117
- st.subheader("Performance Score vs Climate Conditions")
118
 
119
- # Define climate conditions for plotting
120
- climate_conditions = list(conditions.keys())
121
- climate_values = list(conditions.values())
122
-
123
- # Plotting performance score against climate conditions
124
  fig, ax = plt.subplots()
125
- ax.plot(climate_conditions, performance_scores, marker='o', linestyle='-', color='b')
126
- ax.set_xlabel('Climate Conditions')
127
  ax.set_ylabel('Performance Score')
128
- ax.set_title('Performance Score vs Climate Conditions')
129
  ax.grid(True)
130
  st.pyplot(fig)
131
 
 
38
  def get_performance_data(conditions):
39
  all_message = (
40
  f"Provide the expected sports performance score at conditions: "
41
+ f"Temperature {conditions['temperature']}°C."
 
 
 
42
  )
43
  response = call_ai_model(all_message)
44
  generated_text = ""
 
62
 
63
  # Streamlit app layout
64
  st.title("Climate Impact on Sports Performance")
65
+ st.write("Analyze and visualize the impact of temperature on sports performance.")
66
 
67
+ # Input for temperature
68
  temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
 
 
 
 
 
 
69
 
70
  # Button to generate predictions
71
  if st.button("Generate Prediction"):
72
  conditions = {
73
+ "temperature": temperature
 
 
 
 
 
 
74
  }
75
 
76
  try:
77
  with st.spinner("Generating predictions..."):
78
  # Call AI model to get qualitative analysis
79
  qualitative_analysis = (
80
+ f"Assess the impact on sports performance at temperature: "
81
+ f"{temperature}°C."
 
 
 
82
  )
83
  qualitative_result = call_ai_model(qualitative_analysis)
84
 
 
96
  st.write(f"Predicted Performance Scores: {performance_scores}")
97
 
98
  # Plotting the data
99
+ st.subheader("Performance Score vs Temperature")
100
 
101
+ # Plot performance score against temperature
 
 
 
 
102
  fig, ax = plt.subplots()
103
+ ax.plot(conditions['temperature'], performance_scores, marker='o', linestyle='-', color='b')
104
+ ax.set_xlabel('Temperature (°C)')
105
  ax.set_ylabel('Performance Score')
106
+ ax.set_title('Performance Score vs Temperature')
107
  ax.grid(True)
108
  st.pyplot(fig)
109