DAN_AI / app.py
oliverwang15's picture
Updates on highlight color
cc62443
raw
history blame
16.7 kB
import os, json
import gradio as gr
import pandas as pd
QUESTIONS = [
"What is the DOI of this study?",
"What is the Citation ID of this study?",
"What is the First author of this study?",
"What is the year of this study?",
"What is the animal type of this study?",
"What is the exposure age of this study?",
"Is there any behavior test done in this study?",
"What's the Intervention 1's name of this study?(anesthetics only)",
"What's the Intervention 2's name of this study?(anesthetics only)",
"What's the genetic chain of this study?",
]
template = '''We now have a following <document> in the medical field:
"""
{}
"""
We have some introduction here:
1. DOI: The DOI link for the article, usually can be found in the first line of the .txt file for the article. E.g., “DOI: 10.3892/mmr.2019.10397”.
2. Citation ID: The number in the file name. E.g., “1134”.
3. First author: The last name in the file name. E.g., “Guan”.
4. Year: The year in the file name. E.g., “2019”.
5. Animal type: The rodent type used in the article, should be one of the choices: mice, rats. E.g., “rats”.
6. Exposure age: The age when the animals were exposed to anesthetics, should be mentioned as "PND1", "PND7","postnatal day 7", "Gestational day 21", etc, which should be extract as: 'PND XX' , 'Gestational day xx'. E.g., “PND7”.
7. Behavior test: Whether there is any behavior test in the article, should be one of the choices: "Y", "N". "Y" is chosen if there are any of the behavior tests described and done in the article, which mentioned as: "Open field test", "Morris water task", "fear conditioning test", "Dark/light avoidance"; "passive/active avoidance test"; "elevated maze", "Forced swim test", "Object recognition test", "Social interaction/preference“. E.g., “N”.
8. Intervention 1 & Intervention 2: Intervention 1 and Intervention 2 are both anesthetic drugs, which listed as: "isoflurane", "sevoflurane", "desflurane", "ketamine", "propofol", "Midazolam", "Nitrous oxide“. If none, put “NA”. E.g., “propofol”.
9. Genetic chain: Genetic chain is the genetic type of the animals being used in the article, here is the examples:
"C57BL/6", "C57BL/6J" should be extracted as "C57BL/6"; "Sprague Dawley", "Sprague-Dawley", "SD" should be extracted as "Sprague Dawley"; "CD-1" should be extracted as "CD-1"; "Wistar/ST" should be extracted as "Wistar/ST"; "Wistar" should be extracted as "Wistar"; "FMR-1 KO" should be extracted as "FMR-1 KO“. E.g., “Sprague Dawley”.
We have some <question>s begin with "Question" here:
"""
{}
"""
Please finish the following task:
1. Please select the <original sentences> related the each <question> from the <document>.
2. Please use the <original sentences> to answer the <question>.
3. Please provide <original sentences> coming from the <document>.
4. Output the <answer> in the following json format:
{{
"Question 1": {{
"question": {{}},
"answer": {{}},
"original sentences": []
}},
"Question 2": {{
"question": {{}},
"answer": {{}},
"original sentences": []
}},
...
}}
'''
import requests
class OpenAI:
def __init__(self, init_prompt = None):
self.history = []
if init_prompt is not None:
self.history.append({'role': 'system', 'content': init_prompt})
def clear_history(self):
self.history = []
def show_history(self):
for message in self.history:
print(f"{message['role']}: {message['content']}")
def get_raw_history(self):
return self.history
def __call__(self, prompt, with_history = False, model = 'gpt-3.5-turbo', temperature = 0, api_key = None):
URL = 'https://api.openai.com/v1/chat/completions'
new_message = {'role': 'user', 'content': prompt}
if with_history:
self.history.append(new_message)
messages = self.history
else:
messages = [new_message]
resp = requests.post(URL, json={
'model': model,
'messages': messages,
'temperature': temperature,
}, headers={
'Authorization': f"Bearer {api_key}"
})
# print(resp.json())
self.history.append(resp.json()['choices'][0]['message'])
return resp.json()['choices'][0]['message']['content']
class Backend:
def __init__(self):
self.agent = OpenAI()
def read_file(self, file):
# read the file
with open(file.name, 'r') as f:
text = f.read()
return text
def highlight_text(self, text, highlight_list):
# hightlight the reference
for hl in highlight_list:
text = text.replace(hl, f'<mark style="background: #5FACF0">{hl}</mark>')
# add line break
text = text.replace('\n', f" <br /> ")
# add scroll bar
text = f'<div style="height: 500px; overflow: auto;">{text}</div>'
return text
def process_file(self, file, question, openai_key):
# get the question
question = [ f'Question {id_ +1 }: {q}' for id_, q in enumerate(question) if 'Input question' not in q]
question = '\n'.join(question)
# get the text
self.text = self.read_file(file)
# make the prompt
prompt = template.format(self.text, question)
# interact with openai
res = self.agent(prompt, with_history = False, temperature = 0.1, model = 'gpt-3.5-turbo-16k', api_key = openai_key)
res = json.loads(res)
# for multiple questions
self.gpt_result = res
self.curret_question = 0
self.totel_question = len(res.keys())
# make a dataframe to record everything
self.ori_answer_df = pd.DataFrame(res).T
self.answer_df = pd.DataFrame(res).T
# default fist question
res = res['Question 1']
question = res['question']
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
return question, self.answer, highlighted_out_html, self.answer, self.highlighted_out
def process_results(self, answer_correct, correct_answer, reference_correct, correct_reference):
if not hasattr(self, 'clicked_correct_answer'):
raise gr.Error("You need to judge whether the generated answer is correct first")
if not hasattr(self, 'clicked_correct_reference'):
raise gr.Error("You need to judge whether the highlighted reference is correct first")
if not hasattr(self, 'answer_df'):
raise gr.Error("You need to submit the document first")
if self.curret_question >= self.totel_question or self.curret_question < 0:
raise gr.Error("No more questions, please return back")
# record the answer
self.answer_df.loc[f'Question {self.curret_question + 1}', 'answer_correct'] = answer_correct
self.answer_df.loc[f'Question {self.curret_question + 1}', 'reference_correct'] = reference_correct
if self.clicked_correct_answer == True:
if hasattr(self, 'answer'):
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_answer'] = self.answer
else:
raise gr.Error("You need to submit the document first")
else:
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_answer'] = correct_answer
if self.clicked_correct_reference == True:
if hasattr(self, 'highlighted_out'):
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_reference'] = self.highlighted_out
else:
raise gr.Error("You need to submit the document first")
else:
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_reference'] = correct_reference
gr.Info('Results saved!')
return "Results saved!"
def process_next(self):
self.curret_question += 1
if hasattr(self, 'clicked_correct_answer'):
del self.clicked_correct_answer
if hasattr(self, 'clicked_correct_reference'):
del self.clicked_correct_reference
if self.curret_question >= self.totel_question:
# self.curret_question -= 1
return "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
else:
res = self.gpt_result[f'Question {self.curret_question + 1}']
question = res['question']
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
return question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None
def process_last(self):
self.curret_question -= 1
if hasattr(self, 'clicked_correct_answer'):
del self.clicked_correct_answer
if hasattr(self, 'clicked_correct_reference'):
del self.clicked_correct_reference
if self.curret_question < 0:
# self.curret_question += 1
return "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
else:
res = self.gpt_result[f'Question {self.curret_question + 1}']
question = res['question']
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
return question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None
def download_answer(self, path = './tmp', name = 'answer.xlsx'):
os.makedirs(path, exist_ok = True)
path = os.path.join(path, name)
self.ori_answer_df.to_excel(path, index = False)
return path
def download_corrected(self, path = './tmp', name = 'corrected_answer.xlsx'):
os.makedirs(path, exist_ok = True)
path = os.path.join(path, name)
self.answer_df.to_excel(path, index = False)
return path
def change_correct_answer(self, correctness):
if correctness == "Correct":
self.clicked_correct_answer = True
return "No need to change"
else:
if hasattr(self, 'answer'):
self.clicked_correct_answer = False
return self.answer
else:
return "No answer yet, you need to submit the document first"
def change_correct_reference(self, correctness):
if correctness == "Correct":
self.clicked_correct_reference = True
return "No need to change"
else:
if hasattr(self, 'highlighted_out'):
self.clicked_correct_reference = False
return self.highlighted_out
else:
return "No answer yet, you need to submit the document first"
with gr.Blocks(theme="dark") as demo:
backend = Backend()
with gr.Row():
with gr.Row():
with gr.Group():
gr.Markdown(f'<center><h1>Input</h1></center>')
gr.Markdown(f'<center><p>Please First Upload the File</p></center>')
openai_key = gr.Textbox(
label='Enter your OpenAI API key here',
type='password')
file = gr.File(label='Upload your .txt file here', file_types=['.txt'])
questions = gr.CheckboxGroup(choices = QUESTIONS, value = QUESTIONS, label="Questions", info="Please select the question you want to ask")
btn_submit_txt = gr.Button(value='Submit txt')
btn_submit_txt.style(full_width=True)
with gr.Group():
gr.Markdown(f'<center><h1>Output</h1></center>')
gr.Markdown(f'<center><p>The answer to your question is :</p></center>')
question_box = gr.Textbox(label='Question')
answer_box = gr.Textbox(label='Answer')
highlighted_text = gr.outputs.HTML(label="Highlighted Text")
with gr.Row():
btn_last_question = gr.Button(value='Last Question')
btn_next_question = gr.Button(value='Next Question')
with gr.Group():
gr.Markdown(f'<center><h1>Correct the Result</h1></center>')
gr.Markdown(f'<center><p>Please Correct the Results</p></center>')
with gr.Row():
save_results = gr.Textbox(placeholder = "Still need to click the button above to save the results", label = 'Save Results')
with gr.Group():
gr.Markdown(f'<center><p>Please Choose: </p></center>')
answer_correct = gr.Radio(choices = ["Correct", "Incorrect"], label='Is the Generated Answer Correct?', info="Pease select whether the generated text is correct")
correct_answer = gr.Textbox(placeholder = "Please judge on the generated answer", label = 'Correct Answer', interactive = True)
reference_correct = gr.Radio(choices = ["Correct", "Incorrect"], label="Is the Reference Correct?", info="Pease select whether the reference is correct")
correct_reference = gr.Textbox(placeholder = "Please judge on the generated answer", label = 'Correct Reference', interactive = True)
btn_submit_correctness = gr.Button(value='Submit Correctness')
btn_submit_correctness.style(full_width=True)
with gr.Group():
gr.Markdown(f'<center><h1>Download</h1></center>')
gr.Markdown(f'<center><p>Download the processed data and corrected data</p></center>')
answer_file = gr.File(label='Download processed data', file_types=['.xlsx'])
btn_download_answer = gr.Button(value='Download processed data')
btn_download_answer.style(full_width=True)
corrected_file = gr.File(label='Download corrected data', file_types=['.xlsx'])
btn_download_corrected = gr.Button(value='Download corrected data')
btn_download_corrected.style(full_width=True)
with gr.Row():
reset = gr.Button(value='Reset')
reset.style(full_width=True)
# Answer change
answer_correct.input(
backend.change_correct_answer,
inputs = [answer_correct],
outputs = [correct_answer],
)
reference_correct.input(
backend.change_correct_reference,
inputs = [reference_correct],
outputs = [correct_reference],
)
# Submit button
btn_submit_txt.click(
backend.process_file,
inputs=[file, questions, openai_key],
outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference],
)
btn_submit_correctness.click( # TODO
backend.process_results,
inputs=[answer_correct, correct_answer, reference_correct, correct_reference],
outputs=[save_results],
)
# Switch question button
btn_last_question.click(
backend.process_last,
outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference, save_results, answer_correct, reference_correct],
)
btn_next_question.click(
backend.process_next,
outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference, save_results, answer_correct, reference_correct],
)
# Download button
btn_download_answer.click(
backend.download_answer,
outputs=[answer_file],
)
btn_download_corrected.click(
backend.download_corrected,
outputs=[corrected_file],
)
demo.queue()
demo.launch()