|
""" |
|
sparse_structure_vae.py |
|
|
|
This file implements a Variational Autoencoder (VAE) for 3D sparse structural representations. |
|
It's part of the TRELLIS framework and contains components for encoding volumetric data |
|
into a latent space and decoding it back to volumetric representation. |
|
|
|
The implementation includes: |
|
- 3D normalization layers |
|
- 3D residual blocks for feature extraction |
|
- 3D downsampling and upsampling blocks for resolution changes |
|
- Encoder (SparseStructureEncoder) that maps input volumes to a latent distribution |
|
- Decoder (SparseStructureDecoder) that reconstructs volumes from latent codes |
|
|
|
This VAE architecture is specifically designed for capturing structural information |
|
in a compressed latent representation that can be sampled probabilistically. |
|
""" |
|
|
|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from ..modules.norm import GroupNorm32, ChannelLayerNorm32 |
|
from ..modules.spatial import pixel_shuffle_3d |
|
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 |
|
|
|
|
|
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module: |
|
""" |
|
Return a normalization layer based on the specified type. |
|
|
|
Args: |
|
norm_type: Either "group" for GroupNorm or "layer" for LayerNorm |
|
*args, **kwargs: Arguments passed to the normalization layer |
|
|
|
Returns: |
|
An instance of the requested normalization layer |
|
""" |
|
if norm_type == "group": |
|
return GroupNorm32(32, *args, **kwargs) |
|
elif norm_type == "layer": |
|
return ChannelLayerNorm32(*args, **kwargs) |
|
else: |
|
raise ValueError(f"Invalid norm type {norm_type}") |
|
|
|
|
|
class ResBlock3d(nn.Module): |
|
""" |
|
3D Residual Block with two convolutions and a skip connection. |
|
|
|
The block applies normalization, activation, and convolution twice, |
|
with a skip connection from the input to the output. |
|
""" |
|
def __init__( |
|
self, |
|
channels: int, |
|
out_channels: Optional[int] = None, |
|
norm_type: Literal["group", "layer"] = "layer", |
|
): |
|
""" |
|
Initialize a 3D ResBlock. |
|
|
|
Args: |
|
channels: Number of input channels |
|
out_channels: Number of output channels (defaults to input channels) |
|
norm_type: Type of normalization to use |
|
""" |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
|
|
|
|
self.norm1 = norm_layer(norm_type, channels) |
|
self.norm2 = norm_layer(norm_type, self.out_channels) |
|
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1) |
|
|
|
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1)) |
|
|
|
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for the ResBlock. |
|
|
|
Args: |
|
x: Input tensor of shape [B, C, D, H, W] |
|
|
|
Returns: |
|
Output tensor after residual computation |
|
""" |
|
h = self.norm1(x) |
|
h = F.silu(h) |
|
h = self.conv1(h) |
|
h = self.norm2(h) |
|
h = F.silu(h) |
|
h = self.conv2(h) |
|
h = h + self.skip_connection(x) |
|
return h |
|
|
|
|
|
class DownsampleBlock3d(nn.Module): |
|
""" |
|
3D downsampling block to reduce spatial dimensions by a factor of 2. |
|
|
|
Supports downsampling via strided convolution or average pooling. |
|
""" |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
mode: Literal["conv", "avgpool"] = "conv", |
|
): |
|
""" |
|
Initialize a 3D downsampling block. |
|
|
|
Args: |
|
in_channels: Number of input channels |
|
out_channels: Number of output channels |
|
mode: Downsampling method ("conv" or "avgpool") |
|
""" |
|
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}" |
|
|
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
if mode == "conv": |
|
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2) |
|
elif mode == "avgpool": |
|
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for the downsampling block. |
|
|
|
Args: |
|
x: Input tensor of shape [B, C, D, H, W] |
|
|
|
Returns: |
|
Downsampled tensor |
|
""" |
|
if hasattr(self, "conv"): |
|
return self.conv(x) |
|
else: |
|
return F.avg_pool3d(x, 2) |
|
|
|
|
|
class UpsampleBlock3d(nn.Module): |
|
""" |
|
3D upsampling block to increase spatial dimensions by a factor of 2. |
|
|
|
Supports upsampling via transposed convolution or nearest-neighbor interpolation. |
|
""" |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
mode: Literal["conv", "nearest"] = "conv", |
|
): |
|
""" |
|
Initialize a 3D upsampling block. |
|
|
|
Args: |
|
in_channels: Number of input channels |
|
out_channels: Number of output channels |
|
mode: Upsampling method ("conv" or "nearest") |
|
""" |
|
assert mode in ["conv", "nearest"], f"Invalid mode {mode}" |
|
|
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
if mode == "conv": |
|
|
|
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1) |
|
elif mode == "nearest": |
|
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for the upsampling block. |
|
|
|
Args: |
|
x: Input tensor of shape [B, C, D, H, W] |
|
|
|
Returns: |
|
Upsampled tensor |
|
""" |
|
if hasattr(self, "conv"): |
|
x = self.conv(x) |
|
return pixel_shuffle_3d(x, 2) |
|
else: |
|
return F.interpolate(x, scale_factor=2, mode="nearest") |
|
|
|
|
|
class SparseStructureEncoder(nn.Module): |
|
""" |
|
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3). |
|
|
|
Takes a 3D volume as input and encodes it into a latent distribution (mean and logvar). |
|
Can sample from this distribution to get a latent representation. |
|
|
|
Args: |
|
in_channels (int): Channels of the input. |
|
latent_channels (int): Channels of the latent representation. |
|
num_res_blocks (int): Number of residual blocks at each resolution. |
|
channels (List[int]): Channels of the encoder blocks. |
|
num_res_blocks_middle (int): Number of residual blocks in the middle. |
|
norm_type (Literal["group", "layer"]): Type of normalization layer. |
|
use_fp16 (bool): Whether to use FP16. |
|
""" |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
latent_channels: int, |
|
num_res_blocks: int, |
|
channels: List[int], |
|
num_res_blocks_middle: int = 2, |
|
norm_type: Literal["group", "layer"] = "layer", |
|
use_fp16: bool = False, |
|
): |
|
""" |
|
Initialize the encoder for sparse structure. |
|
""" |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.latent_channels = latent_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.channels = channels |
|
self.num_res_blocks_middle = num_res_blocks_middle |
|
self.norm_type = norm_type |
|
self.use_fp16 = use_fp16 |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
|
|
|
|
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1) |
|
|
|
|
|
self.blocks = nn.ModuleList([]) |
|
for i, ch in enumerate(channels): |
|
|
|
self.blocks.extend([ |
|
ResBlock3d(ch, ch) |
|
for _ in range(num_res_blocks) |
|
]) |
|
|
|
if i < len(channels) - 1: |
|
self.blocks.append( |
|
DownsampleBlock3d(ch, channels[i+1]) |
|
) |
|
|
|
|
|
self.middle_block = nn.Sequential(*[ |
|
ResBlock3d(channels[-1], channels[-1]) |
|
for _ in range(num_res_blocks_middle) |
|
]) |
|
|
|
|
|
self.out_layer = nn.Sequential( |
|
norm_layer(norm_type, channels[-1]), |
|
nn.SiLU(), |
|
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1) |
|
) |
|
|
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
Return the device of the model. |
|
""" |
|
return next(self.parameters()).device |
|
|
|
def convert_to_fp16(self) -> None: |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.use_fp16 = True |
|
self.dtype = torch.float16 |
|
self.blocks.apply(convert_module_to_f16) |
|
self.middle_block.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self) -> None: |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.use_fp16 = False |
|
self.dtype = torch.float32 |
|
self.blocks.apply(convert_module_to_f32) |
|
self.middle_block.apply(convert_module_to_f32) |
|
|
|
def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor: |
|
""" |
|
Forward pass through the encoder. |
|
|
|
Args: |
|
x: Input tensor of shape [B, C, D, H, W] |
|
sample_posterior: Whether to sample from the posterior distribution or just return mean |
|
return_raw: Whether to return the raw outputs (z, mean, logvar) instead of just z |
|
|
|
Returns: |
|
Either the latent representation or a tuple of (z, mean, logvar) if return_raw=True |
|
""" |
|
h = self.input_layer(x) |
|
h = h.type(self.dtype) |
|
|
|
|
|
for block in self.blocks: |
|
h = block(h) |
|
h = self.middle_block(h) |
|
|
|
h = h.type(x.dtype) |
|
h = self.out_layer(h) |
|
|
|
|
|
mean, logvar = h.chunk(2, dim=1) |
|
|
|
|
|
if sample_posterior: |
|
std = torch.exp(0.5 * logvar) |
|
z = mean + std * torch.randn_like(std) |
|
else: |
|
z = mean |
|
|
|
if return_raw: |
|
return z, mean, logvar |
|
return z |
|
|
|
|
|
class SparseStructureDecoder(nn.Module): |
|
""" |
|
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3). |
|
|
|
Takes a latent representation and decodes it back to a 3D volume. |
|
Uses a symmetric architecture to the encoder with upsampling instead of downsampling. |
|
|
|
Args: |
|
out_channels (int): Channels of the output. |
|
latent_channels (int): Channels of the latent representation. |
|
num_res_blocks (int): Number of residual blocks at each resolution. |
|
channels (List[int]): Channels of the decoder blocks. |
|
num_res_blocks_middle (int): Number of residual blocks in the middle. |
|
norm_type (Literal["group", "layer"]): Type of normalization layer. |
|
use_fp16 (bool): Whether to use FP16. |
|
""" |
|
def __init__( |
|
self, |
|
out_channels: int, |
|
latent_channels: int, |
|
num_res_blocks: int, |
|
channels: List[int], |
|
num_res_blocks_middle: int = 2, |
|
norm_type: Literal["group", "layer"] = "layer", |
|
use_fp16: bool = False, |
|
): |
|
""" |
|
Initialize the decoder for sparse structure. |
|
""" |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.latent_channels = latent_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.channels = channels |
|
self.num_res_blocks_middle = num_res_blocks_middle |
|
self.norm_type = norm_type |
|
self.use_fp16 = use_fp16 |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
|
|
|
|
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1) |
|
|
|
|
|
self.middle_block = nn.Sequential(*[ |
|
ResBlock3d(channels[0], channels[0]) |
|
for _ in range(num_res_blocks_middle) |
|
]) |
|
|
|
|
|
self.blocks = nn.ModuleList([]) |
|
for i, ch in enumerate(channels): |
|
|
|
self.blocks.extend([ |
|
ResBlock3d(ch, ch) |
|
for _ in range(num_res_blocks) |
|
]) |
|
|
|
if i < len(channels) - 1: |
|
self.blocks.append( |
|
UpsampleBlock3d(ch, channels[i+1]) |
|
) |
|
|
|
|
|
self.out_layer = nn.Sequential( |
|
norm_layer(norm_type, channels[-1]), |
|
nn.SiLU(), |
|
nn.Conv3d(channels[-1], out_channels, 3, padding=1) |
|
) |
|
|
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
Return the device of the model. |
|
""" |
|
return next(self.parameters()).device |
|
|
|
def convert_to_fp16(self) -> None: |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.use_fp16 = True |
|
self.dtype = torch.float16 |
|
self.blocks.apply(convert_module_to_f16) |
|
self.middle_block.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self) -> None: |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.use_fp16 = False |
|
self.dtype = torch.float32 |
|
self.blocks.apply(convert_module_to_f32) |
|
self.middle_block.apply(convert_module_to_f32) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass through the decoder. |
|
|
|
Args: |
|
x: Latent representation tensor of shape [B, C, D, H, W] |
|
|
|
Returns: |
|
Reconstructed output tensor |
|
""" |
|
h = self.input_layer(x) |
|
|
|
h = h.type(self.dtype) |
|
|
|
h = self.middle_block(h) |
|
|
|
for block in self.blocks: |
|
h = block(h) |
|
|
|
h = h.type(x.dtype) |
|
h = self.out_layer(h) |
|
return h |
|
|