omnipart's picture
init
491eded
"""
Structured Latent Variable Encoder Module
----------------------------------------
This file defines encoder classes for the Structured Latent Variable Autoencoder (SLatVAE).
It contains implementations for the sparse transformer-based encoder that maps input
features to a latent distribution, as well as a memory-efficient elastic version.
The encoder follows a variational approach, outputting means and log variances for
the latent space representation.
"""
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...modules import sparse as sp
from .base import SparseTransformerBase
from ..sparse_elastic_mixin import SparseTransformerElasticMixin
class SLatEncoder(SparseTransformerBase):
"""
Sparse Latent Variable Encoder that uses transformer architecture to encode
sparse data into a latent distribution.
"""
def __init__(
self,
resolution: int,
in_channels: int,
model_channels: int,
latent_channels: int,
num_blocks: int,
num_heads: Optional[int] = None,
num_head_channels: Optional[int] = 64,
mlp_ratio: float = 4,
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
window_size: int = 8,
pe_mode: Literal["ape", "rope"] = "ape",
use_fp16: bool = False,
use_checkpoint: bool = False,
qk_rms_norm: bool = False,
):
"""
Initialize the Sparse Latent Encoder.
Args:
resolution: Input data resolution
in_channels: Number of input feature channels
model_channels: Number of internal model feature channels
latent_channels: Dimension of the latent space
num_blocks: Number of transformer blocks
num_heads: Number of attention heads (optional)
num_head_channels: Channels per attention head if num_heads is None
mlp_ratio: Expansion ratio for MLP in transformer blocks
attn_mode: Type of attention mechanism to use
window_size: Size of attention windows if using windowed attention
pe_mode: Positional encoding mode (absolute or relative)
use_fp16: Whether to use half-precision floating point
use_checkpoint: Whether to use gradient checkpointing
qk_rms_norm: Whether to apply RMS normalization to query and key
"""
super().__init__(
in_channels=in_channels,
model_channels=model_channels,
num_blocks=num_blocks,
num_heads=num_heads,
num_head_channels=num_head_channels,
mlp_ratio=mlp_ratio,
attn_mode=attn_mode,
window_size=window_size,
pe_mode=pe_mode,
use_fp16=use_fp16,
use_checkpoint=use_checkpoint,
qk_rms_norm=qk_rms_norm,
)
self.resolution = resolution
# Output layer projects to twice the latent dimension (for mean and logvar)
self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels)
self.initialize_weights()
if use_fp16:
self.convert_to_fp16()
def initialize_weights(self) -> None:
"""
Initialize model weights with special handling for output layer.
The output layer weights are initialized to zero to stabilize training.
"""
super().initialize_weights()
# Zero-out output layers for better training stability
nn.init.constant_(self.out_layer.weight, 0)
nn.init.constant_(self.out_layer.bias, 0)
def forward(self, x: sp.SparseTensor, sample_posterior=True, return_raw=False):
"""
Forward pass through the encoder.
Args:
x: Input sparse tensor
sample_posterior: Whether to sample from posterior or return mean
return_raw: Whether to return mean and logvar in addition to samples
Returns:
If return_raw is True:
- sampled latent variables, mean, and logvar
Otherwise:
- sampled latent variables only
"""
# Process through transformer blocks
h = super().forward(x)
h = h.type(x.dtype)
# Apply layer normalization to features
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
h = self.out_layer(h)
# Split output into mean and logvar components
mean, logvar = h.feats.chunk(2, dim=-1)
if sample_posterior:
# Reparameterization trick: z = mean + std * epsilon
std = torch.exp(0.5 * logvar)
z = mean + std * torch.randn_like(std)
else:
# Use mean directly without sampling
z = mean
z = h.replace(z)
if return_raw:
return z, mean, logvar
else:
return z
class ElasticSLatEncoder(SparseTransformerElasticMixin, SLatEncoder):
"""
SLat VAE encoder with elastic memory management.
Used for training with low VRAM by dynamically managing memory allocation
and performing operations with reduced memory footprint.
"""
pass