ondrejbiza's picture
Working on isa demo.
a560c26
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The main model training loop."""
import functools
import os
import time
from typing import Dict, Iterable, Mapping, Optional, Tuple, Type, Union
from absl import logging
from clu import checkpoint
from clu import metric_writers
from clu import metrics
from clu import parameter_overview
from clu import periodic_actions
import flax
from flax import linen as nn
import jax
import jax.numpy as jnp
import ml_collections
import numpy as np
import optax
from scenic.train_lib import lr_schedules
from scenic.train_lib import optimizers
import tensorflow as tf
from invariant_slot_attention.lib import evaluator
from invariant_slot_attention.lib import input_pipeline
from invariant_slot_attention.lib import losses
from invariant_slot_attention.lib import utils
Array = jnp.ndarray
ArrayTree = Union[Array, Iterable["ArrayTree"], Mapping[str, "ArrayTree"]] # pytype: disable=not-supported-yet
PRNGKey = Array
def train_step(
model,
tx,
rng,
step,
state_vars,
opt_state,
params,
batch,
loss_fn,
train_metrics_cls,
predicted_max_num_instances,
ground_truth_max_num_instances,
conditioning_key = None,
):
"""Perform a single training step.
Args:
model: Model used in training step.
tx: The optimizer to use to minimize loss_fn.
rng: Random number key
step: Which training step we are on.
state_vars: Accessory variables.
opt_state: The state of the optimizer.
params: The current parameters to be updated.
batch: Training inputs for this step.
loss_fn: Loss function that takes model predictions and a batch of data.
train_metrics_cls: The metrics collection for computing training metrics.
predicted_max_num_instances: Maximum number of instances in prediction.
ground_truth_max_num_instances: Maximum number of instances in ground truth,
including background (which counts as a separate instance).
conditioning_key: Optional string. If provided, defines the batch key to be
used as conditioning signal for the model. Otherwise this is inferred from
the available keys in the batch.
Returns:
Tuple of the updated opt, state_vars, new random number key,
metrics update, and step + 1. Note that some of this info is stored in
TrainState, but here it is unpacked.
"""
# Split PRNGKey and bind to host / device.
new_rng, rng = jax.random.split(rng)
rng = jax.random.fold_in(rng, jax.host_id())
rng = jax.random.fold_in(rng, jax.lax.axis_index("batch"))
init_rng, dropout_rng = jax.random.split(rng, 2)
mutable_var_keys = list(state_vars.keys()) + ["intermediates"]
conditioning = batch[conditioning_key] if conditioning_key else None
def train_loss_fn(params, state_vars):
preds, mutable_vars = model.apply(
{"params": params, **state_vars}, video=batch["video"],
conditioning=conditioning, mutable=mutable_var_keys,
rngs={"state_init": init_rng, "dropout": dropout_rng}, train=True,
padding_mask=batch.get("padding_mask"))
# Filter intermediates, as we do not want to store them in the TrainState.
state_vars = utils.filter_key_from_frozen_dict(
mutable_vars, key="intermediates")
loss, loss_aux = loss_fn(preds, batch)
return loss, (state_vars, preds, loss_aux)
grad_fn = jax.value_and_grad(train_loss_fn, has_aux=True)
(loss, (state_vars, preds, loss_aux)), grad = grad_fn(params, state_vars)
# Compute average gradient across multiple workers.
grad = jax.lax.pmean(grad, axis_name="batch")
updates, new_opt_state = tx.update(grad, opt_state, params)
new_params = optax.apply_updates(params, updates)
# Compute metrics.
metrics_update = train_metrics_cls.gather_from_model_output(
loss=loss,
**loss_aux,
predicted_segmentations=utils.remove_singleton_dim(
preds["outputs"].get("segmentations")), # pytype: disable=attribute-error
ground_truth_segmentations=batch.get("segmentations"),
predicted_max_num_instances=predicted_max_num_instances,
ground_truth_max_num_instances=ground_truth_max_num_instances,
padding_mask=batch.get("padding_mask"),
mask=batch.get("mask"))
return (
new_opt_state, new_params, state_vars, new_rng, metrics_update, step + 1)
def train_and_evaluate(config,
workdir):
"""Runs a training and evaluation loop.
Args:
config: Configuration to use.
workdir: Working directory for checkpoints and TF summaries. If this
contains checkpoint training will be resumed from the latest checkpoint.
"""
rng = jax.random.PRNGKey(config.seed)
tf.io.gfile.makedirs(workdir)
# Input pipeline.
rng, data_rng = jax.random.split(rng)
# Make sure each host uses a different RNG for the training data.
if config.get("seed_data", True): # Default to seeding data if not specified.
data_rng = jax.random.fold_in(data_rng, jax.host_id())
else:
data_rng = None
train_ds, eval_ds = input_pipeline.create_datasets(config, data_rng)
train_iter = iter(train_ds) # pytype: disable=wrong-arg-types
# Initialize model
model = utils.build_model_from_config(config.model)
# Construct TrainMetrics and EvalMetrics, metrics collections.
train_metrics_cls = utils.make_metrics_collection("TrainMetrics",
config.train_metrics_spec)
eval_metrics_cls = utils.make_metrics_collection("EvalMetrics",
config.eval_metrics_spec)
def init_model(rng):
rng, init_rng, model_rng, dropout_rng = jax.random.split(rng, num=4)
init_conditioning = None
if config.get("conditioning_key"):
init_conditioning = jnp.ones(
[1] + list(train_ds.element_spec[config.conditioning_key].shape)[2:],
jnp.int32)
init_inputs = jnp.ones(
[1] + list(train_ds.element_spec["video"].shape)[2:],
jnp.float32)
initial_vars = model.init(
{"params": model_rng, "state_init": init_rng, "dropout": dropout_rng},
video=init_inputs, conditioning=init_conditioning,
padding_mask=jnp.ones(init_inputs.shape[:-1], jnp.int32))
# Split into state variables (e.g. for batchnorm stats) and model params.
# Note that `pop()` on a FrozenDict performs a deep copy.
state_vars, initial_params = initial_vars.pop("params") # pytype: disable=attribute-error
# Filter out intermediates (we don't want to store these in the TrainState).
state_vars = utils.filter_key_from_frozen_dict(
state_vars, key="intermediates")
return state_vars, initial_params
state_vars, initial_params = init_model(rng)
parameter_overview.log_parameter_overview(initial_params) # pytype: disable=wrong-arg-types
learning_rate_fn = lr_schedules.get_learning_rate_fn(config)
tx = optimizers.get_optimizer(
config.optimizer_configs, learning_rate_fn, params=initial_params)
opt_state = tx.init(initial_params)
state = utils.TrainState(
step=1, opt_state=opt_state, params=initial_params, rng=rng,
variables=state_vars)
loss_fn = functools.partial(
losses.compute_full_loss, loss_config=config.losses)
checkpoint_dir = os.path.join(workdir, "checkpoints")
ckpt = checkpoint.MultihostCheckpoint(checkpoint_dir)
state = ckpt.restore_or_initialize(state)
initial_step = int(state.step)
# Replicate our parameters.
state = flax.jax_utils.replicate(state, devices=jax.local_devices())
del rng # rng is stored in the state.
# Only write metrics on host 0, write to logs on all other hosts.
writer = metric_writers.create_default_writer(
workdir, just_logging=jax.host_id() > 0)
writer.write_hparams(utils.prepare_dict_for_logging(config.to_dict()))
logging.info("Starting training loop at step %d.", initial_step)
report_progress = periodic_actions.ReportProgress(
num_train_steps=config.num_train_steps, writer=writer)
if jax.process_index() == 0:
profiler = periodic_actions.Profile(num_profile_steps=5, logdir=workdir)
p_train_step = jax.pmap(
train_step,
axis_name="batch",
donate_argnums=(2, 3, 4, 5, 6, 7),
static_broadcasted_argnums=(0, 1, 8, 9, 10, 11, 12))
train_metrics = None
with metric_writers.ensure_flushes(writer):
if config.num_train_steps == 0:
with report_progress.timed("eval"):
evaluate(model, state, eval_ds, loss_fn, eval_metrics_cls, config,
writer, step=0)
with report_progress.timed("checkpoint"):
ckpt.save(flax.jax_utils.unreplicate(state))
return
for step in range(initial_step, config.num_train_steps + 1):
# `step` is a Python integer. `state.step` is JAX integer on GPU/TPU.
is_last_step = step == config.num_train_steps
with jax.profiler.StepTraceAnnotation("train", step_num=step):
batch = jax.tree_map(np.asarray, next(train_iter))
(opt_state, params, state_vars, rng, metrics_update, p_step
) = p_train_step(
model, tx, state.rng, state.step, state.variables,
state.opt_state, state.params, batch, loss_fn,
train_metrics_cls,
config.num_slots,
config.max_instances + 1, # Incl. background.
config.get("conditioning_key"))
state = state.replace( # pytype: disable=attribute-error
opt_state=opt_state,
params=params,
step=p_step,
variables=state_vars,
rng=rng,
)
metric_update = flax.jax_utils.unreplicate(metrics_update)
train_metrics = (
metric_update
if train_metrics is None else train_metrics.merge(metric_update))
# Quick indication that training is happening.
logging.log_first_n(logging.INFO, "Finished training step %d.", 5, step)
report_progress(step, time.time())
if jax.process_index() == 0:
profiler(step)
if step % config.log_loss_every_steps == 0 or is_last_step:
metrics_res = train_metrics.compute()
writer.write_scalars(step, jax.tree_map(np.array, metrics_res))
train_metrics = None
if step % config.eval_every_steps == 0 or is_last_step:
with report_progress.timed("eval"):
evaluate(model, state, eval_ds, loss_fn, eval_metrics_cls,
config, writer, step=step)
if step % config.checkpoint_every_steps == 0 or is_last_step:
with report_progress.timed("checkpoint"):
ckpt.save(flax.jax_utils.unreplicate(state))
def evaluate(model, state, eval_ds, loss_fn_eval, eval_metrics_cls, config,
writer, step):
"""Evaluate the model."""
eval_metrics, eval_batch, eval_preds = evaluator.evaluate(
model,
state,
eval_ds,
loss_fn_eval,
eval_metrics_cls,
predicted_max_num_instances=config.num_slots,
ground_truth_max_num_instances=config.max_instances + 1, # Incl. bg.
slice_size=config.get("eval_slice_size"),
slice_keys=config.get("eval_slice_keys"),
conditioning_key=config.get("conditioning_key"),
remove_from_predictions=config.get("remove_from_predictions"),
metrics_on_cpu=config.get("metrics_on_cpu", False))
metrics_res = eval_metrics.compute()
writer.write_scalars(
step, jax.tree_map(np.array, utils.flatten_named_dicttree(metrics_res)))
writer.write_images(
step,
jax.tree_map(
np.array,
utils.prepare_images_for_logging(
config,
eval_batch,
eval_preds,
n_samples=config.get("n_samples", 5),
n_frames=config.get("n_frames", 1),
min_n_colors=config.get("logging_min_n_colors", 1))))