myhs's picture
Update app.py
aaa36a5 verified
raw
history blame
4.02 kB
import gradio as gr
import json
import pandas as pd
from urllib.request import urlopen
from urllib.error import URLError
import re
from datetime import datetime
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
head_style = """
<style>
@media (min-width: 1536px)
{
.gradio-container {
min-width: var(--size-full) !important;
}
}
</style>
"""
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/hf-research/"
def findfile():
model_meta_info = 'model-meta-info'
results_sum = 'hf-academic'
url = f"{DATA_URL_BASE}{model_meta_info}.json"
response = urlopen(url)
model_info = json.loads(response.read().decode('utf-8'))
url = f"{DATA_URL_BASE}{results_sum}.json"
response = urlopen(url)
results = json.loads(response.read().decode('utf-8'))
return model_info, results
MAIN_LEADERBOARD_DESCRIPTION = """## Compass Academic Leaderboard
--WIP--
"""
Initial_title = 'Compass Academic Leaderboard'
def make_results_tab(model_info, results):
models_list, datasets_list = [], []
for i in model_info:
models_list.append([i['abbr'], i['display_name']])
for i in results.keys():
datasets_list.append(i)
result_list = []
index = 0
for model in models_list:
this_result = {}
this_result['Index'] = index
this_result['Model Name'] = model[1]
index += 1
for dataset in datasets_list:
this_result[dataset] = results[dataset][model[0]]
result_list.append(this_result)
df = pd.DataFrame(result_list)
return df
def calculate_column_widths(df):
column_widths = []
for column in df.columns:
header_length = len(str(column))
max_content_length = df[column].astype(str).map(len).max()
width = max(header_length * 10, max_content_length * 8) + 20
width = max(160, min(400, width))
column_widths.append(width)
return column_widths
def show_results_tab(df, model_info, results):
# def filter_df(model_name):
# df = make_results_tab(model_info, results)
# default_val = 'Input the Model Name (fuzzy)'
# if model_name != default_val:
# method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Model Name']]
# flag = [model_name.lower() in name for name in method_names]
# df['TEMP'] = flag
# df = df[df['TEMP'] == True]
# df.pop('TEMP')
# return df
with gr.Row():
model_name = gr.Textbox(
value='Input the Model Name (fuzzy)',
label='Search Model Name',
interactive=True
)
table = gr.DataFrame(
value=df,
interactive=False,
wrap=False,
column_widths=calculate_column_widths(df),
)
# search_box.submit(
# fn=filter_df,
# inputs=search_box,
# outputs=table
# )
def create_interface():
model_info, results = findfile()
with gr.Blocks() as demo:
# title_comp = gr.Markdown(Initial_title)
gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.TabItem('Results', elem_id='main', id=0):
df = make_results_tab(model_info, results)
show_results_tab(df, model_info, results)
with gr.TabItem('Predictions', elem_id='notmain', id=1):
# dataset_tab(results, structs[i], dataset)
pass
return demo
# model_info, results = findfile()
# breakpoint()
if __name__ == '__main__':
demo = create_interface()
demo.queue()
demo.launch(server_name='0.0.0.0')