Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,638 Bytes
92c3d7f 6391fa9 92c3d7f b61aa6d 92c3d7f ecd462b 92c3d7f ecd462b 92c3d7f ecd462b 92c3d7f ecd462b 92c3d7f 84ade0a 33976bc 92c3d7f ecd462b 92c3d7f ecd462b 92c3d7f f9ed6cb 7b460e9 f9ed6cb 06b6264 92c3d7f 06b6264 e52038b 06b6264 e52038b 06b6264 e52038b 92c3d7f 06b6264 8928cc8 92c3d7f 06b6264 8928cc8 92c3d7f 06b6264 92c3d7f 06b6264 f9ed6cb 06b6264 92c3d7f 06b6264 33976bc 92c3d7f 06b6264 92c3d7f e93fe4a 33976bc 06b6264 33976bc 06b6264 ecd462b 92c3d7f 33976bc 92c3d7f 06b6264 92c3d7f e93fe4a 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 33976bc 92c3d7f 122eb28 92c3d7f e93fe4a 92c3d7f fde6683 92c3d7f f9ed6cb 92c3d7f 122eb28 92c3d7f f9ed6cb 92c3d7f f2af076 92c3d7f f2af076 688bcac f2af076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
import spaces
import argparse
import os
import shutil
import cv2
import gradio as gr
import numpy as np
import torch
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
import huggingface_hub
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms.functional import normalize
from dreamo.dreamo_pipeline import DreamOPipeline
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img, resize_numpy_image_long
from tools import BEN2
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=8080)
parser.add_argument('--no_turbo', action='store_true')
args = parser.parse_args()
huggingface_hub.login(os.getenv('HF_TOKEN'))
try:
shutil.rmtree('gradio_cached_examples')
except FileNotFoundError:
print("cache folder not exist")
class Generator:
def __init__(self):
device = torch.device('cuda')
# preprocessing models
# background remove model: BEN2
self.bg_rm_model = BEN2.BEN_Base().to(device).eval()
hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
# face crop and align tool: facexlib
self.face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
)
# load dreamo
model_root = 'black-forest-labs/FLUX.1-dev'
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
dreamo_pipeline.load_dreamo_model(device, use_turbo=not args.no_turbo)
self.dreamo_pipeline = dreamo_pipeline.to(device)
@torch.no_grad()
def get_align_face(self, img):
# the face preprocessing code is same as PuLID
self.face_helper.clean_all()
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
self.face_helper.read_image(image_bgr)
self.face_helper.get_face_landmarks_5(only_center_face=True)
self.face_helper.align_warp_face()
if len(self.face_helper.cropped_faces) == 0:
return None
align_face = self.face_helper.cropped_faces[0]
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
input = input.to(torch.device("cuda"))
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(input)
# only keep the face features
face_features_image = torch.where(bg, white_image, input)
face_features_image = tensor2img(face_features_image, rgb2bgr=False)
return face_features_image
generator = Generator()
@spaces.GPU
@torch.inference_mode()
def generate_image(
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt,
seed,
width=1024,
height=1024,
ref_res=512,
num_steps=12,
guidance=3.5,
true_cfg=1,
cfg_start_step=0,
cfg_end_step=0,
neg_prompt='',
neg_guidance=3.5,
first_step_guidance=0,
):
print(prompt)
ref_conds = []
debug_images = []
ref_images = [ref_image1, ref_image2]
ref_tasks = [ref_task1, ref_task2]
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
if ref_image is not None:
if ref_task == "id":
ref_image = resize_numpy_image_long(ref_image, 1024)
ref_image = generator.get_align_face(ref_image)
elif ref_task != "style":
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
if ref_task != "id":
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res)
debug_images.append(ref_image)
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
ref_image = 2 * ref_image - 1.0
ref_conds.append(
{
'img': ref_image,
'task': ref_task,
'idx': idx + 1,
}
)
seed = int(seed)
if seed == -1:
seed = torch.Generator(device="cpu").seed()
image = generator.dreamo_pipeline(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_steps,
guidance_scale=guidance,
ref_conds=ref_conds,
generator=torch.Generator(device="cpu").manual_seed(seed),
true_cfg_scale=true_cfg,
true_cfg_start_step=cfg_start_step,
true_cfg_end_step=cfg_end_step,
negative_prompt=neg_prompt,
neg_guidance_scale=neg_guidance,
first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance,
).images[0]
return image, debug_images, seed
# -----------------------------
# (1) ์ฌ๊ธฐ์ ์์ API ํธ์ถ์ ์ํ ์ถ๊ฐ ์ฝ๋
# -----------------------------
import requests
import random
import tempfile
import subprocess
from gradio_client import Client, handle_file
# ์์: ์๊ฒฉ ์๋ฒ Endpoint (ํ์ํ๋ค๋ฉด ์์ )
REMOTE_ENDPOINT = os.getenv("H100_URL")
client = Client(REMOTE_ENDPOINT)
def run_process_video_api(image_path: str, prompt: str, video_length: float = 2.0):
"""
์๊ฒฉ /process ์๋ํฌ์ธํธ ํธ์ถํ์ฌ ์์์ ์์ฑ.
(์์: prompt, negative_prompt, seed ๋ฑ์ ํ๋์ฝ๋ฉํ๊ฑฐ๋ ์ํ๋๋๋ก ์กฐ์ ๊ฐ๋ฅ)
"""
# ๋๋ค ์๋
seed_val = random.randint(0, 9999999)
# negative_prompt = "" ๋ฑ ๊ณ ์
negative_prompt = ""
use_teacache = True
# /process ํธ์ถ (gradio_client)
result = client.predict(
input_image=handle_file(image_path),
prompt=prompt,
n_prompt=negative_prompt,
seed=seed_val,
use_teacache=use_teacache,
video_length=video_length,
api_name="/process",
)
# result๋ (video_dict, preview_dict, md_text, html_text) ๊ตฌ์กฐ
video_dict, preview_dict, md_text, html_text = result
video_path = video_dict.get("video") if isinstance(video_dict, dict) else None
return video_path
def add_watermark_to_video(input_video_path: str, watermark_text="Ginigen.com") -> str:
"""
FFmpeg๋ก ์์์ ์ค๋ฅธ์ชฝ ํ๋จ ์ํฐ๋งํฌ๋ฅผ ์ถ๊ฐํ ์ ์์์ ๋ฆฌํด
"""
if not os.path.exists(input_video_path):
raise FileNotFoundError(f"Input video not found: {input_video_path}")
# ์ถ๋ ฅ ๊ฒฝ๋ก
base, ext = os.path.splitext(input_video_path)
watermarked_path = base + "_wm" + ext
# ffmpeg ๋ช
๋ น์ด ๊ตฌ์ฑ
# - y: ๋ฎ์ด์ฐ๊ธฐ
# drawtext ํํฐ๋ก ์ค๋ฅธ์ชฝ ํ๋จ(x=w-tw-10, y=h-th-10)์ boxcolor=black ๋ฐํฌ๋ช
๋ฐ์ค
cmd = [
"ffmpeg", "-y",
"-i", input_video_path,
"-vf", f"drawtext=fontsize=20:fontcolor=white:text='{watermark_text}':x=w-tw-10:y=h-th-10:box=1:[email protected]:boxborderw=5",
"-codec:a", "copy",
watermarked_path
]
try:
subprocess.run(cmd, check=True)
except Exception as e:
print(f"[WARN] FFmpeg watermark failed: {e}")
return input_video_path # ์คํจ ์ ์๋ณธ ๋ฐํ
return watermarked_path
def generate_video_from_image(image_array: np.ndarray):
"""
1) Numpy ์ด๋ฏธ์ง๋ฅผ ์์ ํ์ผ๋ก ์ ์ฅ
2) ์๊ฒฉ API๋ก 2์ด ์์ ์์ฑ (๊ธฐ๋ณธ prompt ๊ณ ์ )
3) FFmpeg๋ก 'Ginigen.com' ์ํฐ๋งํฌ ์ถ๊ฐ
4) ์ต์ข
mp4 ๊ฒฝ๋ก ๋ฐํ
"""
if image_array is None:
raise gr.Error("์ด๋ฏธ์ง๊ฐ ์์ต๋๋ค.")
# (1) ์์ ํ์ผ๋ก ์ ์ฅ
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as fp:
temp_img_path = fp.name
Image.fromarray(image_array).save(temp_img_path, format="PNG")
# (2) ์๊ฒฉ API ํธ์ถ
default_video_prompt = "Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions."
result_video_path = run_process_video_api(
image_path=temp_img_path,
prompt=default_video_prompt,
video_length=2.0,
)
if result_video_path is None:
raise gr.Error("์์ API ํธ์ถ ์คํจ ๋๋ ๊ฒฐ๊ณผ ์์")
# (3) FFmpeg ์ํฐ๋งํฌ ์ถ๊ฐ
final_video = add_watermark_to_video(result_video_path, watermark_text="Ginigen.com")
return final_video
# -----------------------------
# Custom CSS, Headers, etc.
# -----------------------------
_CUSTOM_CSS_ = """
:root {
--primary-color: #f8c3cd; /* Sakura pink - primary accent */
--secondary-color: #b3e5fc; /* Pastel blue - secondary accent */
--background-color: #f5f5f7; /* Very light gray background */
--card-background: #ffffff; /* White for cards */
--text-color: #424242; /* Dark gray for text */
--accent-color: #ffb6c1; /* Light pink for accents */
--success-color: #c8e6c9; /* Pastel green for success */
--warning-color: #fff9c4; /* Pastel yellow for warnings */
--shadow-color: rgba(0, 0, 0, 0.1); /* Shadow color */
--border-radius: 12px; /* Rounded corners */
}
body {
background-color: var(--background-color) !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
}
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
}
/* Header styling */
h1 {
color: #9c27b0 !important;
font-weight: 800 !important;
text-shadow: 2px 2px 4px rgba(156, 39, 176, 0.2) !important;
letter-spacing: -0.5px !important;
}
/* Card styling for panels */
.panel-box {
border-radius: var(--border-radius) !important;
box-shadow: 0 8px 16px var(--shadow-color) !important;
background-color: var(--card-background) !important;
border: none !important;
overflow: hidden !important;
padding: 20px !important;
margin-bottom: 20px !important;
}
/* Button styling */
button.gr-button {
background: linear-gradient(135deg, var(--primary-color), #e1bee7) !important;
border-radius: var(--border-radius) !important;
color: #4a148c !important;
font-weight: 600 !important;
border: none !important;
padding: 10px 20px !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
}
button.gr-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.15) !important;
background: linear-gradient(135deg, #e1bee7, var(--primary-color)) !important;
}
/* Input fields styling */
input, select, textarea, .gr-input {
border-radius: 8px !important;
border: 2px solid #e0e0e0 !important;
padding: 10px 15px !important;
transition: all 0.3s ease !important;
background-color: #fafafa !important;
}
input:focus, select:focus, textarea:focus, .gr-input:focus {
border-color: var(--primary-color) !important;
box-shadow: 0 0 0 3px rgba(248, 195, 205, 0.3) !important;
}
/* Slider styling */
.gr-form input[type=range] {
appearance: none !important;
width: 100% !important;
height: 6px !important;
background: #e0e0e0 !important;
border-radius: 5px !important;
outline: none !important;
}
.gr-form input[type=range]::-webkit-slider-thumb {
appearance: none !important;
width: 16px !important;
height: 16px !important;
background: var(--primary-color) !important;
border-radius: 50% !important;
cursor: pointer !important;
border: 2px solid white !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
}
/* Dropdown styling */
.gr-form select {
background-color: white !important;
border: 2px solid #e0e0e0 !important;
border-radius: 8px !important;
padding: 10px 15px !important;
}
.gr-form select option {
padding: 10px !important;
}
/* Image upload area */
.gr-image-input {
border: 2px dashed #b39ddb !important;
border-radius: var(--border-radius) !important;
background-color: #f3e5f5 !important;
padding: 20px !important;
display: flex !important;
flex-direction: column !important;
align-items: center !important;
justify-content: center !important;
transition: all 0.3s ease !important;
}
.gr-image-input:hover {
background-color: #ede7f6 !important;
border-color: #9575cd !important;
}
/* Add a nice pattern to the background */
body::before {
content: "" !important;
position: fixed !important;
top: 0 !important;
left: 0 !important;
width: 100% !important;
height: 100% !important;
background:
radial-gradient(circle at 10% 20%, rgba(248, 195, 205, 0.1) 0%, rgba(245, 245, 247, 0) 20%),
radial-gradient(circle at 80% 70%, rgba(179, 229, 252, 0.1) 0%, rgba(245, 245, 247, 0) 20%) !important;
pointer-events: none !important;
z-index: -1 !important;
}
/* Gallery styling */
.gr-gallery {
grid-gap: 15px !important;
}
.gr-gallery-item {
border-radius: var(--border-radius) !important;
overflow: hidden !important;
box-shadow: 0 4px 8px var(--shadow-color) !important;
transition: transform 0.3s ease !important;
}
.gr-gallery-item:hover {
transform: scale(1.02) !important;
}
/* Label styling */
.gr-form label {
font-weight: 600 !important;
color: #673ab7 !important;
margin-bottom: 5px !important;
}
/* Improve spacing */
.gr-padded {
padding: 20px !important;
}
.gr-compact {
gap: 15px !important;
}
.gr-form > div {
margin-bottom: 16px !important;
}
/* Headings */
.gr-form h3 {
color: #7b1fa2 !important;
margin-top: 5px !important;
margin-bottom: 15px !important;
border-bottom: 2px solid #e1bee7 !important;
padding-bottom: 8px !important;
}
/* Examples section */
#examples-panel {
background-color: #f3e5f5 !important;
border-radius: var(--border-radius) !important;
padding: 15px !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05) !important;
}
#examples-panel h2 {
color: #7b1fa2 !important;
font-size: 1.5rem !important;
margin-bottom: 15px !important;
}
/* Accordion styling */
.gr-accordion {
border: 1px solid #e0e0e0 !important;
border-radius: var(--border-radius) !important;
overflow: hidden !important;
}
.gr-accordion summary {
padding: 12px 16px !important;
background-color: #f9f9f9 !important;
cursor: pointer !important;
font-weight: 600 !important;
color: #673ab7 !important;
}
/* Generate button special styling */
#generate-btn {
background: linear-gradient(135deg, #ff9a9e, #fad0c4) !important;
font-size: 1.1rem !important;
padding: 12px 24px !important;
margin-top: 10px !important;
margin-bottom: 15px !important;
width: 100% !important;
}
#generate-btn:hover {
background: linear-gradient(135deg, #fad0c4, #ff9a9e) !important;
}
"""
_HEADER_ = '''
<div style="text-align: center; max-width: 850px; margin: 0 auto; padding: 25px 0;">
<div style="background: linear-gradient(135deg, #f8c3cd, #e1bee7, #b3e5fc); color: white; padding: 15px; border-radius: 15px; box-shadow: 0 10px 20px rgba(0,0,0,0.1); margin-bottom: 20px;">
<h1 style="font-size: 3rem; font-weight: 800; margin: 0; color: white; text-shadow: 2px 2px 4px rgba(0,0,0,0.2);">โจ DreamO Video โจ</h1>
<p style="font-size: 1.2rem; margin: 10px 0 0;">Create customized images with advanced AI</p>
</div>
<div style="background: white; padding: 15px; border-radius: 12px; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
<p style="font-size: 1rem; margin: 0;">In the current demo version, due to ZeroGPU limitations, video generation is restricted to 2 seconds only. (The full version supports generation of up to 60 seconds)</p>
</div>
</div>
<div style="background: #fff9c4; padding: 15px; border-radius: 12px; margin-bottom: 20px; border-left: 5px solid #ffd54f; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
<h3 style="margin-top: 0; color: #ff6f00;">๐ฉ Update Notes:</h3>
<ul style="margin-bottom: 0; padding-left: 20px;">
<li><b>2025.05.11:</b> We have updated the model to mitigate over-saturation and plastic-face issues. The new version shows consistent improvements over the previous release.</li>
<li><b>2025.05.13:</b> 'DreamO Video' Integration version Release</li>
</ul>
</div>
'''
_CITE_ = r"""
<div style="background: white; padding: 20px; border-radius: 12px; margin-top: 20px; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
<p style="margin: 0; font-size: 1.1rem;">If DreamO is helpful, please help to โญ the <a href='https://discord.gg/openfreeai' target='_blank' style="color: #9c27b0; font-weight: 600;">community</a>. Thanks!</p>
<hr style="border: none; height: 1px; background-color: #e0e0e0; margin: 15px 0;">
<h4 style="margin: 0 0 10px; color: #7b1fa2;">๐ง Contact</h4>
<p style="margin: 0;">If you have any questions or feedback, feel free to open a discussion or contact <b>[email protected]</b></p>
</div>
"""
def create_demo():
with gr.Blocks(css=_CUSTOM_CSS_) as demo:
gr.HTML(_HEADER_)
with gr.Row():
with gr.Column(scale=6):
with gr.Group(elem_id="input-panel", elem_classes="panel-box"):
gr.Markdown("### ๐ธ Reference Images")
with gr.Row():
with gr.Column():
ref_image1 = gr.Image(label="Reference Image 1", type="numpy", height=256, elem_id="ref-image-1")
ref_task1 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Task for Reference Image 1", elem_id="ref-task-1")
with gr.Column():
ref_image2 = gr.Image(label="Reference Image 2", type="numpy", height=256, elem_id="ref-image-2")
ref_task2 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Task for Reference Image 2", elem_id="ref-task-2")
gr.Markdown("### โ๏ธ Generation Parameters")
prompt = gr.Textbox(label="Prompt", value="a person playing guitar in the street", elem_id="prompt-input")
with gr.Row():
width = gr.Slider(768, 1024, 1024, step=16, label="Width", elem_id="width-slider")
height = gr.Slider(768, 1024, 1024, step=16, label="Height", elem_id="height-slider")
with gr.Row():
num_steps = gr.Slider(8, 30, 12, step=1, label="Number of Steps", elem_id="steps-slider")
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance Scale", elem_id="guidance-slider")
seed = gr.Textbox(label="Seed (-1 for random)", value="-1", elem_id="seed-input")
with gr.Accordion("Advanced Options", open=False):
ref_res = gr.Slider(512, 1024, 512, step=16, label="Resolution for Reference Image")
neg_prompt = gr.Textbox(label="Negative Prompt", value="")
neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Negative Guidance")
with gr.Row():
true_cfg = gr.Slider(1, 5, 1, step=0.1, label="True CFG")
first_step_guidance = gr.Slider(0, 10, 0, step=0.1, label="First Step Guidance")
with gr.Row():
cfg_start_step = gr.Slider(0, 30, 0, step=1, label="CFG Start Step")
cfg_end_step = gr.Slider(0, 30, 0, step=1, label="CFG End Step")
generate_btn = gr.Button("โจ Generate Image", elem_id="generate-btn")
gr.HTML(_CITE_)
with gr.Column(scale=6):
with gr.Group(elem_id="output-panel", elem_classes="panel-box"):
gr.Markdown("### ๐ผ๏ธ Generated Result")
output_image = gr.Image(label="Generated Image", elem_id="output-image", format='png')
seed_output = gr.Textbox(label="Used Seed", elem_id="seed-output")
# (2) ์์ ์์ฑ ๋ฒํผ & ์ถ๋ ฅ ์์ญ ์ถ๊ฐ
generate_video_btn = gr.Button("๐ฌ Generate Video from Image")
output_video = gr.Video(label="Generated Video", elem_id="video-output")
gr.Markdown("### ๐ Preprocessing")
debug_image = gr.Gallery(
label="Preprocessing Results (including face crop and background removal)",
elem_id="debug-gallery",
)
with gr.Group(elem_id="examples-panel", elem_classes="panel-box"):
gr.Markdown("## ๐ Examples")
example_inps = [
[
'example_inputs/choi.jpg',
None,
'ip',
'ip',
'a woman sitting on the cloud, playing guitar',
1206523688721442817,
],
[
'example_inputs/choi.jpg',
None,
'id',
'ip',
'a woman holding a sign saying "TOP", on the mountain',
10441727852953907380,
],
[
'example_inputs/perfume.png',
None,
'ip',
'ip',
'a perfume under spotlight',
116150031980664704,
],
[
'example_inputs/choi.jpg',
None,
'id',
'ip',
'portrait, in alps',
5443415087540486371,
],
[
'example_inputs/mickey.png',
None,
'style',
'ip',
'generate a same style image. A rooster wearing overalls.',
6245580464677124951,
],
[
'example_inputs/mountain.png',
None,
'style',
'ip',
'generate a same style image. A pavilion by the river, and the distant mountains are endless',
5248066378927500767,
],
[
'example_inputs/shirt.png',
'example_inputs/skirt.jpeg',
'ip',
'ip',
'A girl is wearing a short-sleeved shirt and a short skirt on the beach.',
9514069256241143615,
],
[
'example_inputs/woman2.png',
'example_inputs/dress.png',
'id',
'ip',
'the woman wearing a dress, In the banquet hall',
7698454872441022867,
],
[
'example_inputs/dog1.png',
'example_inputs/dog2.png',
'ip',
'ip',
'two dogs in the jungle',
6187006025405083344,
],
]
gr.Examples(
examples=example_inps,
inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed],
label='Examples by category: IP task (rows 1-4), ID task (row 5), Style task (rows 6-7), Try-On task (rows 8-9)',
cache_examples='lazy',
outputs=[output_image, debug_image, seed_output],
fn=generate_image,
)
# ๊ธฐ์กด ์ด๋ฏธ์ง ์์ฑ ํจ์์ ์ฐ๊ฒฐ
generate_btn.click(
fn=generate_image,
inputs=[
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt,
seed,
width,
height,
ref_res,
num_steps,
guidance,
true_cfg,
cfg_start_step,
cfg_end_step,
neg_prompt,
neg_guidance,
first_step_guidance,
],
outputs=[output_image, debug_image, seed_output],
)
# (3) ์์ ์์ฑ ๋ฒํผ ํด๋ฆญ -> generate_video_from_image() ํธ์ถ
def on_click_generate_video(img):
if img is None:
raise gr.Error("๋จผ์ ์ด๋ฏธ์ง๋ฅผ ์์ฑํด์ฃผ์ธ์.")
video_path = generate_video_from_image(img)
return video_path
generate_video_btn.click(
fn=on_click_generate_video,
inputs=[output_image],
outputs=[output_video],
)
return demo
if __name__ == '__main__':
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
share=True,
ssr_mode=False
)
|