cutechicken's picture
Create app.py
4a2e1bf verified
raw
history blame
11.5 kB
import logging
import gradio as gr
import pandas as pd
import torch
import numpy as np
import matplotlib.pyplot as plt
from GoogleNews import GoogleNews
from transformers import pipeline
from datetime import datetime, timedelta
import matplotlib
matplotlib.use('Agg')
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
SENTIMENT_ANALYSIS_MODEL = (
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")
logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")
def fetch_articles(query, max_articles=30):
try:
logging.info(f"Fetching up to {max_articles} articles for query: '{query}'")
googlenews = GoogleNews(lang="en")
googlenews.search(query)
# ์ฒซ ํŽ˜์ด์ง€ ๊ฒฐ๊ณผ ๊ฐ€์ ธ์˜ค๊ธฐ
articles = googlenews.result()
# ๋ชฉํ‘œ ๊ธฐ์‚ฌ ์ˆ˜์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ์ถ”๊ฐ€ ํŽ˜์ด์ง€ ๊ฐ€์ ธ์˜ค๊ธฐ
page = 2
while len(articles) < max_articles and page <= 10: # ์ตœ๋Œ€ 10ํŽ˜์ด์ง€๊นŒ์ง€๋งŒ ์‹œ๋„
logging.info(f"Fetched {len(articles)} articles so far. Getting page {page}...")
googlenews.get_page(page)
page_results = googlenews.result()
# ์ƒˆ ๊ฒฐ๊ณผ๊ฐ€ ์—†์œผ๋ฉด ์ค‘๋‹จ
if not page_results:
logging.info(f"No more results found after page {page-1}")
break
articles.extend(page_results)
page += 1
# ์ตœ๋Œ€ ๊ธฐ์‚ฌ ์ˆ˜๋กœ ์ œํ•œ
articles = articles[:max_articles]
logging.info(f"Successfully fetched {len(articles)} articles")
return articles
except Exception as e:
logging.error(
f"Error while searching articles for query: '{query}'. Error: {e}"
)
raise gr.Error(
f"Unable to search articles for query: '{query}'. Try again later...",
duration=5,
)
def analyze_article_sentiment(article):
logging.info(f"Analyzing sentiment for article: {article['title']}")
sentiment = sentiment_analyzer(article["desc"])[0]
article["sentiment"] = sentiment
return article
def calculate_time_weight(article_date_str):
"""
๊ธฐ์‚ฌ ์‹œ๊ฐ„ ๊ธฐ์ค€์œผ๋กœ ๊ฐ€์ค‘์น˜ ๊ณ„์‚ฐ
- 1์‹œ๊ฐ„๋‹น 1%์”ฉ ๊ฐ์†Œ, ์ตœ๋Œ€ 24์‹œ๊ฐ„๊นŒ์ง€๋งŒ ๊ณ ๋ ค
- 1์‹œ๊ฐ„ ๋‚ด ๊ธฐ์‚ฌ: 24% ๊ฐ€์ค‘์น˜
- 10์‹œ๊ฐ„ ์ „ ๊ธฐ์‚ฌ: 15% ๊ฐ€์ค‘์น˜
- 24์‹œ๊ฐ„ ์ด์ƒ ์ „ ๊ธฐ์‚ฌ: 1% ๊ฐ€์ค‘์น˜
"""
try:
# ๊ธฐ์‚ฌ ๋‚ ์งœ ๋ฌธ์ž์—ด ํŒŒ์‹ฑ (๋‹ค์–‘ํ•œ ํ˜•์‹ ์ฒ˜๋ฆฌ)
date_formats = [
'%a, %d %b %Y %H:%M:%S %z', # ๊ธฐ๋ณธ GoogleNews ํ˜•์‹
'%Y-%m-%d %H:%M:%S',
'%a, %d %b %Y %H:%M:%S',
'%Y-%m-%dT%H:%M:%S%z',
'%a %b %d, %Y',
'%d %b %Y'
]
parsed_date = None
for format_str in date_formats:
try:
parsed_date = datetime.strptime(article_date_str, format_str)
break
except ValueError:
continue
# ์–ด๋–ค ํ˜•์‹์œผ๋กœ๋„ ํŒŒ์‹ฑํ•  ์ˆ˜ ์—†์œผ๋ฉด ํ˜„์žฌ ์‹œ๊ฐ„ ๊ธฐ์ค€ 24์‹œ๊ฐ„ ์ „์œผ๋กœ ๊ฐ€์ •
if parsed_date is None:
logging.warning(f"Could not parse date: {article_date_str}, using default 24h ago")
return 0.01 # ์ตœ์†Œ ๊ฐ€์ค‘์น˜ 1%
# ํ˜„์žฌ ์‹œ๊ฐ„๊ณผ์˜ ์ฐจ์ด ๊ณ„์‚ฐ (์‹œ๊ฐ„ ๋‹จ์œ„)
now = datetime.now()
if parsed_date.tzinfo is not None:
now = now.replace(tzinfo=parsed_date.tzinfo)
hours_diff = (now - parsed_date).total_seconds() / 3600
# 24์‹œ๊ฐ„ ์ด๋‚ด์ธ ๊ฒฝ์šฐ๋งŒ ๊ณ ๋ ค
if hours_diff <= 24:
weight = 0.24 - (0.01 * int(hours_diff)) # 1์‹œ๊ฐ„๋‹น 1%์”ฉ ๊ฐ์†Œ
return max(0.01, weight) # ์ตœ์†Œ 1% ๋ณด์žฅ
else:
return 0.01 # 24์‹œ๊ฐ„ ์ด์ƒ ์ง€๋‚œ ๊ธฐ์‚ฌ๋Š” 1% ๊ฐ€์ค‘์น˜
except Exception as e:
logging.error(f"Error calculating time weight: {e}")
return 0.01 # ์˜ค๋ฅ˜ ๋ฐœ์ƒ ์‹œ ์ตœ์†Œ ๊ฐ€์ค‘์น˜ ์ ์šฉ
def calculate_sentiment_score(sentiment_label, time_weight):
"""
๊ฐ์„ฑ ๋ ˆ์ด๋ธ”์— ๋”ฐ๋ฅธ ๊ธฐ๋ณธ ์ ์ˆ˜ ๊ณ„์‚ฐ ๋ฐ ์‹œ๊ฐ„ ๊ฐ€์ค‘์น˜ ์ ์šฉ
- positive: +3์ 
- neutral: 0์ 
- negative: -3์ 
"""
base_score = {
'positive': 3,
'neutral': 0,
'negative': -3
}.get(sentiment_label, 0)
# ๊ฐ€์ค‘์น˜๋ฅผ ์ ์šฉํ•œ ์ถ”๊ฐ€ ์ ์ˆ˜ ๊ณ„์‚ฐ
weighted_addition = base_score * time_weight
return base_score, weighted_addition
def analyze_asset_sentiment(asset_name):
logging.info(f"Starting sentiment analysis for asset: {asset_name}")
logging.info("Fetching up to 30 articles")
articles = fetch_articles(asset_name, max_articles=30)
logging.info("Analyzing sentiment of each article")
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
# ๊ฐ ๊ธฐ์‚ฌ์— ๋Œ€ํ•œ ์‹œ๊ฐ„ ๊ฐ€์ค‘์น˜ ๋ฐ ๊ฐ์„ฑ ์ ์ˆ˜ ๊ณ„์‚ฐ
for article in analyzed_articles:
time_weight = calculate_time_weight(article["date"])
article["time_weight"] = time_weight
sentiment_label = article["sentiment"]["label"]
base_score, weighted_addition = calculate_sentiment_score(sentiment_label, time_weight)
article["base_score"] = base_score
article["weighted_addition"] = weighted_addition
article["total_score"] = base_score + weighted_addition
logging.info("Sentiment analysis completed")
# ์ข…ํ•ฉ ์ ์ˆ˜ ๊ณ„์‚ฐ ๋ฐ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
sentiment_summary = create_sentiment_summary(analyzed_articles, asset_name)
return convert_to_dataframe(analyzed_articles), sentiment_summary
def create_sentiment_summary(analyzed_articles, asset_name):
"""
๊ฐ์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๊ณ  ๊ทธ๋ž˜ํ”„๋กœ ์‹œ๊ฐํ™”
"""
total_articles = len(analyzed_articles)
positive_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "positive")
neutral_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "neutral")
negative_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "negative")
# ๊ธฐ๋ณธ ์ ์ˆ˜ ํ•ฉ๊ณ„
base_score_sum = sum(a["base_score"] for a in analyzed_articles)
# ๊ฐ€์ค‘์น˜ ์ ์šฉ ์ ์ˆ˜ ํ•ฉ๊ณ„
weighted_score_sum = sum(a["total_score"] for a in analyzed_articles)
# ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
# 1. ๊ฐ์„ฑ ๋ถ„ํฌ ํŒŒ์ด ์ฐจํŠธ
labels = ['Positive', 'Neutral', 'Negative']
sizes = [positive_count, neutral_count, negative_count]
colors = ['green', 'gray', 'red']
ax1.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
ax1.axis('equal')
ax1.set_title(f'Sentiment Distribution for {asset_name}')
# 2. ์‹œ๊ฐ„๋ณ„ ๊ฐ€์ค‘์น˜ ์ ์šฉ ์ ์ˆ˜ (์ •๋ ฌ)
sorted_articles = sorted(analyzed_articles, key=lambda x: x.get("date", ""), reverse=True)
# ์ตœ๋Œ€ ํ‘œ์‹œํ•  ๊ธฐ์‚ฌ ์ˆ˜ (๊ฐ€๋…์„ฑ์„ ์œ„ํ•ด)
max_display = min(15, len(sorted_articles))
display_articles = sorted_articles[:max_display]
dates = [a.get("date", "")[:10] for a in display_articles] # ๋‚ ์งœ ๋ถ€๋ถ„๋งŒ ํ‘œ์‹œ
scores = [a.get("total_score", 0) for a in display_articles]
# ์ ์ˆ˜์— ๋”ฐ๋ฅธ ์ƒ‰์ƒ ์„ค์ •
bar_colors = ['green' if s > 0 else 'red' if s < 0 else 'gray' for s in scores]
bars = ax2.bar(range(len(dates)), scores, color=bar_colors)
ax2.set_xticks(range(len(dates)))
ax2.set_xticklabels(dates, rotation=45, ha='right')
ax2.set_ylabel('Weighted Sentiment Score')
ax2.set_title(f'Recent Article Scores for {asset_name}')
ax2.axhline(y=0, color='black', linestyle='-', alpha=0.3)
# ์š”์•ฝ ํ…์ŠคํŠธ ์ถ”๊ฐ€
summary_text = f"""
Analysis Summary for {asset_name}:
Total Articles: {total_articles}
Positive: {positive_count} ({positive_count/total_articles*100:.1f}%)
Neutral: {neutral_count} ({neutral_count/total_articles*100:.1f}%)
Negative: {negative_count} ({negative_count/total_articles*100:.1f}%)
Base Score Sum: {base_score_sum:.2f}
Weighted Score Sum: {weighted_score_sum:.2f}
"""
plt.figtext(0.5, 0.01, summary_text, ha='center', fontsize=10, bbox={"facecolor":"orange", "alpha":0.2, "pad":5})
plt.tight_layout(rect=[0, 0.1, 1, 0.95])
# ์ด๋ฏธ์ง€ ์ €์žฅ
fig_path = f"sentiment_summary_{asset_name.replace(' ', '_')}.png"
plt.savefig(fig_path)
plt.close()
return fig_path
def convert_to_dataframe(analyzed_articles):
df = pd.DataFrame(analyzed_articles)
df["Title"] = df.apply(
lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
axis=1,
)
df["Description"] = df["desc"]
df["Date"] = df["date"]
def sentiment_badge(sentiment):
colors = {
"negative": "red",
"neutral": "gray",
"positive": "green",
}
color = colors.get(sentiment, "grey")
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
# ์ ์ˆ˜ ์ปฌ๋Ÿผ ์ถ”๊ฐ€
df["Base Score"] = df["base_score"]
df["Weight"] = df["time_weight"].apply(lambda x: f"{x*100:.0f}%")
df["Total Score"] = df["total_score"].apply(lambda x: f"{x:.2f}")
return df[["Sentiment", "Title", "Description", "Date", "Base Score", "Weight", "Total Score"]]
with gr.Blocks() as iface:
gr.Markdown("# Trading Asset Sentiment Analysis")
gr.Markdown(
"Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
)
with gr.Row():
input_asset = gr.Textbox(
label="Asset Name",
lines=1,
placeholder="Enter the name of the trading asset...",
)
with gr.Row():
analyze_button = gr.Button("Analyze Sentiment", size="sm")
gr.Examples(
examples=[
"Bitcoin",
"Tesla",
"Apple",
"Amazon",
],
inputs=input_asset,
)
with gr.Row():
with gr.Column():
with gr.Blocks():
gr.Markdown("## Sentiment Summary")
sentiment_summary = gr.Image(type="filepath", label="Sentiment Analysis Summary")
with gr.Row():
with gr.Column():
with gr.Blocks():
gr.Markdown("## Articles and Sentiment Analysis")
articles_output = gr.Dataframe(
headers=["Sentiment", "Title", "Description", "Date", "Base Score", "Weight", "Total Score"],
datatype=["markdown", "html", "markdown", "markdown", "number", "markdown", "markdown"],
wrap=False,
)
analyze_button.click(
analyze_asset_sentiment,
inputs=[input_asset],
outputs=[articles_output, sentiment_summary],
)
logging.info("Launching Gradio interface")
iface.queue().launch()