badassgi / app.py
openfree's picture
Update app.py
edce004 verified
raw
history blame
1.58 kB
import spaces
import torch
import gradio as gr
from transformers import pipeline
import tempfile
import os
MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
css = """
footer {
visibility: hidden;
}
"""
mf_transcribe = gr.Interface(theme="Nymbo/Nymbo_Theme", css=css,
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Whisper Large V3 Turbo: μŒμ„±μ„ ν…μŠ€νŠΈλ‘œ λ³€ν™˜",
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Whisper Large V3 Turbo: μŒμ„±μ„ ν…μŠ€νŠΈλ‘œ λ³€ν™˜",
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
demo.queue().launch(ssr_mode=False)