Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,400 Bytes
812e69e fed4c02 85f6fcb fed4c02 1b24a66 fed4c02 812e69e fed4c02 ab613df 69a9a62 ab613df fed4c02 5d27053 fed4c02 5d27053 adefe82 bf7c515 fed4c02 bf7c515 fed4c02 bf7c515 fed4c02 bf7c515 fed4c02 4166d00 09fcd4a 4294cf6 fed4c02 812e69e fed4c02 812e69e fed4c02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import torch
from diffusers import UniPCMultistepScheduler, FlowMatchEulerDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler
from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE
# from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
from diffusers.models import UNetSpatioTemporalConditionModel
from transformers import T5EncoderModel, T5Tokenizer
from huggingface_hub import hf_hub_download
from PIL import Image
import numpy as np
import gradio as gr
import spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 1.0 #5.0 1.0 for image, 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
pipe.to(device)
# Configure DDIMScheduler with a beta schedule
# pipe.scheduler = DDIMScheduler.from_config(
# pipe.scheduler.config,
# beta_start=0.00085, # Starting beta value
# beta_end=0.012, # Ending beta value
# beta_schedule="linear", # Linear beta schedule (other options: "scaled_linear", "squaredcos_cap_v2")
# num_train_timesteps=1000, # Number of timesteps
# flow_shift=flow_shift
# )
# Configure FlowMatchEulerDiscreteScheduler
# pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
# pipe.scheduler.config,
# flow_shift=flow_shift # Retain flow_shift for WanPipeline compatibility
# )
# --- LoRA State Management ---
# Define unique names for our adapters
DEFAULT_LORA_NAME = "causvid_lora"
CUSTOM_LORA_NAME = "custom_lora"
# Track which custom LoRA is currently loaded to avoid reloading
CURRENTLY_LOADED_CUSTOM_LORA = None
# Load the default base LoRA ONCE at startup
print("Loading base LoRA...")
CAUSVID_LORA_REPO = "Kijai/WanVideo_comfy"
CAUSVID_LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32_v2.safetensors"
try:
causvid_path = hf_hub_download(repo_id=CAUSVID_LORA_REPO, filename=CAUSVID_LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name=DEFAULT_LORA_NAME)
print(f"✅ Default LoRA '{DEFAULT_LORA_NAME}' loaded successfully.")
except Exception as e:
print(f"⚠️ Default LoRA could not be loaded: {e}")
DEFAULT_LORA_NAME = None
# print("Initialization complete. Gradio is starting...")
@spaces.GPU()
def generate(prompt, negative_prompt, width=1024, height=1024, num_inference_steps=30, lora_id=None, progress=gr.Progress(track_tqdm=True)):
# if lora_id and lora_id.strip() != "":
# pipe.unload_lora_weights()
# pipe.load_lora_weights(lora_id.strip())
#pipe.to("cuda")
# apply_first_block_cache(pipe.transformer, FirstBlockCacheConfig(threshold=0.2))
apply_cache_on_pipe(
pipe,
# residual_diff_threshold=0.2,
)
try:
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=1,
num_inference_steps=num_inference_steps,
guidance_scale=1.0, #5.0
)
image = output.frames[0][0]
image = (image * 255).astype(np.uint8)
return Image.fromarray(image)
finally:
pass
iface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Input prompt"),
],
additional_inputs = [
gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"),
gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=10),
gr.Textbox(label="LoRA ID"),
],
outputs=gr.Image(label="output"),
)
iface.launch()
|