Spaces:
Sleeping
Sleeping
File size: 3,622 Bytes
6743685 c191c81 6743685 c191c81 6743685 c191c81 e56e569 c191c81 6743685 c191c81 a4b16b0 c191c81 2764f0d e56e569 c191c81 e13d117 a4b16b0 c191c81 a4b16b0 e13d117 c191c81 a4b16b0 6743685 e56e569 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import cv2
import tempfile
from ultralytics import YOLO
from pathlib import Path
# 全局变量存储当前模型
current_model = None
def load_model(model_path):
global current_model
try:
current_model = YOLO(model_path)
return "模型加载成功!"
except Exception as e:
return f"模型加载失败:{str(e)}"
def detect_image(input_image, conf_threshold):
if current_model is None:
raise gr.Error("请先上传模型文件")
results = current_model(input_image, conf=conf_threshold)
plotted = results[0].plot()
return plotted[:, :, ::-1] # BGR转RGB
def detect_video(input_video, conf_threshold):
if current_model is None:
raise gr.Error("请先上传模型文件")
cap = cv2.VideoCapture(input_video)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 创建临时输出文件
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = current_model(frame, conf=conf_threshold)
plotted = results[0].plot()
out.write(plotted)
cap.release()
out.release()
return temp_file.name
def detect_webcam(camera_input, conf_threshold):
if current_model is None:
raise gr.Error("请先上传模型文件")
if camera_input is None:
return None
results = current_model(camera_input, conf=conf_threshold)
plotted = results[0].plot()
return plotted[:, :, ::-1] # BGR转RGB
with gr.Blocks() as demo:
gr.Markdown("# YOLOv8 自定义模型检测系统")
with gr.Row():
model_input = gr.File(label="上传模型文件 (.pt)", type="filepath")
model_status = gr.Textbox(label="模型状态", interactive=False)
model_input.upload(fn=load_model, inputs=model_input, outputs=model_status)
with gr.Tabs():
with gr.TabItem("图片检测"):
with gr.Row():
img_input = gr.Image(label="输入图片", type="filepath")
img_output = gr.Image(label="检测结果")
img_conf = gr.Slider(0, 1, value=0.5, label="置信度阈值")
img_button = gr.Button("执行检测")
with gr.TabItem("视频检测"):
with gr.Row():
video_input = gr.Video(label="输入视频")
video_output = gr.Video(label="检测结果")
video_conf = gr.Slider(0, 1, value=0.5, label="置信度阈值")
video_button = gr.Button("执行检测")
with gr.TabItem("实时摄像头"):
webcam_input = gr.Webcam(label="摄像头画面") # 使用官方 Webcam 组件
webcam_output = gr.Image(label="检测结果")
webcam_conf = gr.Slider(0, 1, value=0.5, label="置信度阈值")
webcam_button = gr.Button("开始检测")
webcam_button.click(fn=detect_webcam, inputs=[webcam_input, webcam_conf], outputs=webcam_output)
# 绑定事件处理
img_button.click(fn=detect_image, inputs=[img_input, img_conf], outputs=img_output)
video_button.click(fn=detect_video, inputs=[video_input, video_conf], outputs=video_output)
webcam_button.click(fn=detect_webcam, inputs=[webcam_input, webcam_conf], outputs=webcam_output)
if __name__ == "__main__":
demo.launch() |