|
from fastapi import FastAPI, HTTPException
|
|
from models import CVExtracted, InsertedText, JobAndCV, ClassificationResult, InsertedLink
|
|
import os
|
|
from io import BytesIO
|
|
import extractor
|
|
from datetime import datetime
|
|
from PyPDF2 import PdfReader
|
|
import requests
|
|
import classificator
|
|
|
|
os.environ['TRANSFORMERS_CACHE'] = '/transformers_cache'
|
|
os.environ['HF_HOME'] = '/transformers_cache'
|
|
|
|
|
|
|
|
app = FastAPI()
|
|
@app.get("/", response_model=dict[str, str])
|
|
def getall():
|
|
return {"hello":"world"}
|
|
|
|
|
|
@app.post("/ext", response_model=CVExtracted)
|
|
async def extract(text: InsertedText):
|
|
dictresult = extractor.predict(text.text)
|
|
return CVExtracted(**dictresult)
|
|
|
|
|
|
@app.post("/classify", response_model=ClassificationResult)
|
|
async def classify(body:JobAndCV ):
|
|
mininmal_start = 0
|
|
maximal_end = 0
|
|
positions = []
|
|
userMajors = []
|
|
if len(body.cv.experiences) > 0:
|
|
mininmal_start = datetime.strptime(body.cv.experiences[0]['start'], "%Y-%m-%d").date() if body.cv.experiences[0].get('start') != None else datetime.today().date()
|
|
maximal_end = datetime.strptime(body.cv.experiences[0]['end'], "%Y-%m-%d").date()
|
|
for exp in body.cv.experiences:
|
|
positions.append(exp['position'])
|
|
if exp.get('end') == None:
|
|
exp['end'] = datetime.today().strftime("%Y-%m-%d")
|
|
if datetime.strptime(exp['start'], "%Y-%m-%d").date() < mininmal_start:
|
|
mininmal_start = datetime.strptime(exp['start'], "%Y-%m-%d").date()
|
|
if datetime.strptime(exp['end'], "%Y-%m-%d").date() > maximal_end:
|
|
maximal_end = datetime.strptime(exp['end'], "%Y-%m-%d").date()
|
|
else:
|
|
mininmal_start = 0
|
|
maximal_end = 0
|
|
|
|
for edu in body.cv.educations:
|
|
userMajors.append(edu['major'])
|
|
|
|
yoe = (maximal_end - mininmal_start).days//365
|
|
cv = {
|
|
"experiences": str(body.cv.experiences),
|
|
"positions": str(positions),
|
|
"userMajors": str(userMajors),
|
|
"skills": str(body.cv.skills),
|
|
"yoe": yoe
|
|
}
|
|
job = {
|
|
"jobDesc": body.job.jobDesc,
|
|
"role": body.job.role,
|
|
"majors": str(body.job.majors),
|
|
"skills": str(body.job.skills),
|
|
"minYoE": body.job.minYoE
|
|
}
|
|
results = classificator.predict(cv, job)
|
|
return ClassificationResult(**results)
|
|
|
|
@app.post("/cv", response_model=CVExtracted)
|
|
async def extract(link: InsertedLink):
|
|
response = requests.get(link.link)
|
|
if response.status_code == 200:
|
|
|
|
pdf_reader = PdfReader(BytesIO(response.content))
|
|
number_of_pages = len(pdf_reader.pages)
|
|
|
|
page = pdf_reader.pages[0]
|
|
text = page.extract_text()
|
|
for i in range(1, number_of_pages):
|
|
text+= '\n' + pdf_reader.pages[i].extract_text()
|
|
else:
|
|
|
|
raise HTTPException(status_code=response.status_code, detail="File server error")
|
|
|
|
dictresult = extractor.predict(text)
|
|
return CVExtracted(**dictresult) |