Upload folder using huggingface_hub
Browse files- classificator.py +36 -3
- requirements.txt +2 -1
- svc.pkl +3 -0
classificator.py
CHANGED
|
@@ -1,11 +1,44 @@
|
|
| 1 |
from sentence_transformers import SentenceTransformer
|
| 2 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
-
|
|
|
|
| 4 |
st = SentenceTransformer('all-mpnet-base-v2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def predict(cv, job):
|
| 7 |
diffYoe = cv.yoe - job.minimumYoe
|
| 8 |
results = {}
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
return results
|
|
|
|
| 1 |
from sentence_transformers import SentenceTransformer
|
| 2 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pickle
|
| 5 |
st = SentenceTransformer('all-mpnet-base-v2')
|
| 6 |
+
filename = 'svc.pkl'
|
| 7 |
+
|
| 8 |
+
with open(filename, 'rb') as file:
|
| 9 |
+
model = pickle.load(file)
|
| 10 |
+
|
| 11 |
+
# role_req-exp 0.341522
|
| 12 |
+
# role_pos 0.350747
|
| 13 |
+
# major_similarity 0.846268
|
| 14 |
+
# skill_similarity 0.774542
|
| 15 |
+
# score 0.986356
|
| 16 |
+
# cv = {
|
| 17 |
+
# "experiences": str(body.cv.experiences),
|
| 18 |
+
# "positions": str(positions),
|
| 19 |
+
# "userMajors": str(userMajors),
|
| 20 |
+
# "skills": str(body.cv.skills),
|
| 21 |
+
# "yoe": yoe
|
| 22 |
+
# }
|
| 23 |
+
# job = {
|
| 24 |
+
# "jobDesc": body.job.jobDesc,
|
| 25 |
+
# "role": body.job.role,
|
| 26 |
+
# "majors": str(body.job.majors),
|
| 27 |
+
# "skills": str(body.job.skills),
|
| 28 |
+
# "minYoE": body.job.minYoE
|
| 29 |
+
# }
|
| 30 |
|
| 31 |
def predict(cv, job):
|
| 32 |
diffYoe = cv.yoe - job.minimumYoe
|
| 33 |
results = {}
|
| 34 |
+
role_req_exp = cosine_similarity(st.encode(cv['experiences']), st.encode(job['role']+' '+job['jobDesc']))
|
| 35 |
+
role_pos = cosine_similarity(st.encode(cv['positions']), st.encode(job['role']))
|
| 36 |
+
major_similarity = cosine_similarity(st.encode(cv['userMajors']), st.encode(job['majors']))
|
| 37 |
+
skill_similarity = cosine_similarity(st.encode(cv['skills']), st.encode(job['skills']))
|
| 38 |
+
score_yoe = 0.5 if diffYoe == -1 else (1 if diffYoe > 0 else 0)
|
| 39 |
+
score = 0.35 * role_req_exp + 0.1 * role_pos + 0.15 * major_similarity + 0.3* score_yoe + 0.1 * skill_similarity
|
| 40 |
+
X = np.array([role_req_exp, role_pos, major_similarity, skill_similarity, score]).reshape(1, -1)
|
| 41 |
+
res = model.predict(X)
|
| 42 |
+
results['score'] = model.predict(X)[:, 1]
|
| 43 |
+
results['is_accepted'] = np.argmax(res)
|
| 44 |
return results
|
requirements.txt
CHANGED
|
@@ -5,4 +5,5 @@ transformers
|
|
| 5 |
uvicorn[standard]
|
| 6 |
PyPDF2
|
| 7 |
sentence_transformers
|
| 8 |
-
scikit-learn
|
|
|
|
|
|
| 5 |
uvicorn[standard]
|
| 6 |
PyPDF2
|
| 7 |
sentence_transformers
|
| 8 |
+
scikit-learn
|
| 9 |
+
numpy
|
svc.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd2c1759d412d9d7266a181048eb7297198b0bf1231d57181f017e924048ae78
|
| 3 |
+
size 15296
|