Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,326 Bytes
26f9f8c 5f66166 1bc5792 1082e14 ab8a2ac 26f9f8c 1bc5792 26f9f8c 5f66166 26f9f8c ab8a2ac 5f66166 ab8a2ac 1082e14 9177c96 1bc5792 5f66166 1bc5792 5f66166 1bc5792 26f9f8c ab8a2ac 26f9f8c 1bc5792 78afd2f 26f9f8c 1bc5792 26f9f8c 1bc5792 5f66166 1bc5792 5f66166 1bc5792 5f66166 1bc5792 5f66166 1bc5792 5f66166 1bc5792 5f66166 1bc5792 ab8a2ac 1bc5792 ab8a2ac 1082e14 ab8a2ac 1082e14 325abfd 1bc5792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from diffusers import DiffusionPipeline
from tags_straight import TAGS_STRAIGHT
from tags_lesbian import TAGS_LESBIAN
from tags_gay import TAGS_GAY
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device == "cuda" else torch.float32
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl"
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Create checkbox groups for each tag set
def create_checkboxes(tag_dict, suffix):
categories = list(tag_dict.keys())
return [gr.CheckboxGroup(choices=list(tag_dict[cat].keys()), label=f"{cat} Tags ({suffix})") for cat in categories], categories
straight_checkboxes, straight_categories = create_checkboxes(TAGS_STRAIGHT, "Straight")
lesbian_checkboxes, lesbian_categories = create_checkboxes(TAGS_LESBIAN, "Lesbian")
gay_checkboxes, gay_categories = create_checkboxes(TAGS_GAY, "Gay")
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, active_tab, *tag_selections,
progress=gr.Progress(track_tqdm=True)):
negative_base = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{negative_base}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if active_tab == "Prompt Input":
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {prompt}"
else:
combined_tags = []
# The tag_selections come in order: straight, lesbian, gay
if active_tab == "Straight":
# slice first len(straight_checkboxes) from tag_selections
selected_sets = tag_selections[:len(straight_checkboxes)]
for cat, selected in zip(straight_categories, selected_sets):
combined_tags.extend([TAGS_STRAIGHT[cat][tag] for tag in selected])
elif active_tab == "Lesbian":
offset = len(straight_checkboxes)
selected_sets = tag_selections[offset:offset + len(lesbian_checkboxes)]
for cat, selected in zip(lesbian_categories, selected_sets):
combined_tags.extend([TAGS_LESBIAN[cat][tag] for tag in selected])
elif active_tab == "Gay":
offset = len(straight_checkboxes) + len(lesbian_checkboxes)
selected_sets = tag_selections[offset:offset + len(gay_checkboxes)]
for cat, selected in zip(gay_categories, selected_sets):
combined_tags.extend([TAGS_GAY[cat][tag] for tag in selected])
tag_string = ", ".join(combined_tags)
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {tag_string}"
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
#left-column {
width: 50%;
display: inline-block;
padding: 20px;
vertical-align: top;
}
#right-column {
width: 50%;
display: inline-block;
vertical-align: top;
padding: 20px;
margin-top: 53px;
}
#run-button {
width: 100%;
margin-top: 10px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(elem_id="left-column"):
gr.Markdown("# Rainbow Media X")
result = gr.Image(label="Result", show_label=False)
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative prompt", placeholder="Enter negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=10, step=0.1, value=7)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=35)
run_button = gr.Button("Run", elem_id="run-button")
with gr.Column(elem_id="right-column"):
active_tab = gr.State("Prompt Input")
with gr.Tabs() as tabs:
with gr.TabItem("Prompt Input") as prompt_tab:
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt")
prompt_tab.select(lambda: "Prompt Input", outputs=active_tab)
with gr.TabItem("Straight") as straight_tab:
for cb in straight_checkboxes:
cb.render()
straight_tab.select(lambda: "Straight", outputs=active_tab)
with gr.TabItem("Lesbian") as lesbian_tab:
for cb in lesbian_checkboxes:
cb.render()
lesbian_tab.select(lambda: "Lesbian", outputs=active_tab)
with gr.TabItem("Gay") as gay_tab:
for cb in gay_checkboxes:
cb.render()
gay_tab.select(lambda: "Gay", outputs=active_tab)
run_button.click(
fn=infer,
inputs=[
prompt, negative_prompt, seed, randomize_seed,
width, height, guidance_scale, num_inference_steps,
active_tab,
*straight_checkboxes,
*lesbian_checkboxes,
*gay_checkboxes
],
outputs=[result, seed, prompt_info]
)
demo.queue().launch()
|