Spaces:
Runtime error
Runtime error
File size: 4,822 Bytes
1ca0686 d042411 1ca0686 a451187 d042411 a451187 d042411 9f020c6 1ca0686 dddc433 d042411 a451187 d042411 6153e60 d042411 a451187 d042411 a451187 d042411 a451187 2a79df3 a451187 d042411 a451187 6153e60 1ca0686 d042411 3112e6e d042411 a451187 d042411 a451187 d042411 2a79df3 a451187 2a79df3 a451187 2a79df3 a451187 2a79df3 a451187 fc4d986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import streamlit as st
import pandas as pd
from transformers import pipeline
from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments
from sklearn.model_selection import train_test_split
from transformers import DistilBertTokenizerFast
from pprint import pprint
from datasets import load_dataset
import tensorflow as tf
st.title("CS634 - milestone3/4 - Tedi Pano")
@st.cache_resource
def load_data():
dataset_dict = load_dataset('HUPD/hupd',
name='sample',
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
icpr_label=None,
train_filing_start_date='2016-01-01',
train_filing_end_date='2016-01-21',
val_filing_start_date='2016-01-22',
val_filing_end_date='2016-01-31',
)
st.write('Loading is done!')
return dataset_dict
@st.cache_resource
def training_computation(_dataset_dict):
df = pd.DataFrame(_dataset_dict['train'])
vf = pd.DataFrame(_dataset_dict['validation'])
accepted_rejected = ['ACCEPTED', 'REJECTED']
df = df[df['decision'].isin(accepted_rejected)]
df['patentability_score'] = df['decision'].map({'ACCEPTED': 1, 'REJECTED': 0})
vf = vf[vf['decision'].isin(accepted_rejected)]
vf['patentability_score'] = vf['decision'].map({'ACCEPTED': 1, 'REJECTED': 0})
st.write("Processed the data")
dftrain, dftest = train_test_split(df, test_size = 0.99, random_state = None)
vftrain, vftest = train_test_split(df, test_size = 0.99, random_state = None)
#st.write(dftrain.shape[0])
#st.write(vftrain.shape[0])
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
X_dtrain = dftrain['abstract'].tolist()
y_dtrain = dftrain['patentability_score'].tolist()
X_vtrain = vftrain['abstract'].tolist()
y_vtrain = vftrain['patentability_score'].tolist()
X_dtest = dftest['abstract'].tolist()
y_dtest = dftest['patentability_score'].tolist()
train_encodings = tokenizer(X_dtrain, truncation=True, padding=True)
val_encodings = tokenizer(X_vtrain, truncation=True, padding=True)
test_encodings = tokenizer(X_dtest, truncation=True, padding=True)
st.write("tokenizing completed!")
train_dataset = tf.data.Dataset.from_tensor_slices((
dict(train_encodings),
y_dtrain
))
val_dataset = tf.data.Dataset.from_tensor_slices((
dict(val_encodings),
y_vtrain
))
test_dataset = tf.data.Dataset.from_tensor_slices((
dict(test_encodings),
y_dtest
))
#st.write("back to dataset!")
training_args = TFTrainingArguments(
output_dir='./results',
num_train_epochs=1,
per_device_train_batch_size=8,
per_device_eval_batch_size=16,
warmup_steps=5,
eval_steps=5
)
with training_args.strategy.scope():
model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
trainer = TFTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset
)
st.write("training in progress.....")
trainer.train()
st.write("training completed")
return trainer
dataset_dict = load_data()
trainer = training_computation(dataset_dict)
patents = pd.DataFrame(dataset_dict['train'])
accepted_rejected = ['ACCEPTED', 'REJECTED']
patents = patents[patents['decision'].isin(accepted_rejected)]
patents['patentability_score'] = patents['decision'].map({'ACCEPTED': 1, 'REJECTED': 0})
patent_selection = st.selectbox("Select Patent",patents['patent_number'])
patent = patents.loc[patents['patent_number'] == patent_selection]
#st.write(patent.shape[0])
st.write(patent['abstract'])
st.write(patent['claims'])
with st.form("my_form"):
submitted = st.form_submit_button("Submit")
pat_abstract = patent['abstract'].tolist()
pat_score = patent['patentability_score'].tolist()
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
test_encodings = tokenizer(pat_abstract, truncation=True, padding=True)
test_dataset = tf.data.Dataset.from_tensor_slices((
dict(test_encodings),
pat_score
))
predictions = trainer.predict(test_dataset)
if submitted:
if(predictions[1][0] == 1):
st.write("Patent is ACCEPTED")
st.write("with a certainty of " + str(predictions[0][0][1]))
else:
st.write("Patent is REJECTED")
st.write("with a certainty of " + str(predictions[0][0][1]))
|