Spaces:
Sleeping
Sleeping
File size: 11,515 Bytes
b7c0cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
from typing import Dict, List, Tuple, Any, Optional
from pydantic import BaseModel, Field
import streamlit as st
from dotenv import load_dotenv
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_groq import ChatGroq
from langgraph.graph import StateGraph, END
# Load environment variables (still useful as fallback)
load_dotenv()
# Configure page
st.set_page_config(page_title="AI Blog Generator", layout="wide")
# API Key handling in sidebar
with st.sidebar:
st.title("Configuration")
# LLM Provider Selection
provider = st.radio("LLM Provider", ["OpenAI", "Groq"])
if provider == "OpenAI":
openai_api_key = st.text_input("OpenAI API Key", type="password", help="Enter your OpenAI API key here")
model = st.selectbox("Model", ["gpt-3.5-turbo", "gpt-4", "gpt-4o"])
if openai_api_key:
os.environ["OPENAI_API_KEY"] = openai_api_key
else: # Groq
groq_api_key = st.text_input("Groq API Key", type="password", help="Enter your Groq API key here")
model = st.selectbox("Model", ["llama-3.3-70b-versatile","gemma2-9b-it","qwen-2.5-32b","mistral-saba-24b", "deepseek-r1-distill-qwen-32b"])
if groq_api_key:
os.environ["GROQ_API_KEY"] = groq_api_key
st.divider()
st.write("## About")
st.write("This app uses LangGraph to generate structured blog posts with a multi-step workflow.")
st.write("Made with ❤️ using LangGraph and Streamlit")
# Define the state schema
class BlogGeneratorState(BaseModel):
topic: str = Field(default="")
audience: str = Field(default="")
tone: str = Field(default="")
word_count: int = Field(default=500)
outline: List[str] = Field(default_factory=list)
sections: Dict[str, str] = Field(default_factory=dict)
final_blog: str = Field(default="")
error: Optional[str] = Field(default=None)
# Initialize LLM based on selected provider
def get_llm():
global provider, model
if provider == "OpenAI":
if not os.environ.get("OPENAI_API_KEY"):
st.error("Please enter your OpenAI API key in the sidebar")
st.stop()
return ChatOpenAI(model=model, temperature=0.7)
else: # Groq
if not os.environ.get("GROQ_API_KEY"):
st.error("Please enter your Groq API key in the sidebar")
st.stop()
return ChatGroq(model=model, temperature=0.7)
# Create prompt templates
outline_prompt = ChatPromptTemplate.from_template(
"""You are a professional blog writer. Create an outline for a blog post about {topic}.
The audience is {audience} and the tone should be {tone}.
The blog should be approximately {word_count} words.
Return ONLY the outline as a list of section headings (without numbers or bullets).
Each heading should be concise and engaging."""
)
section_prompt = ChatPromptTemplate.from_template(
"""Write content for the following section of a blog post about {topic}:
Section: {section}
The audience is {audience} and the tone should be {tone}.
Make this section approximately {section_word_count} words.
Make the content engaging, informative, and valuable to the reader.
Return ONLY the content for this section, without the heading."""
)
final_assembly_prompt = ChatPromptTemplate.from_template(
"""You have a blog post with the following sections:
{sections_content}
Format this into a complete, professional blog post in Markdown format with:
1. An engaging title at the top as an H1 heading
2. A brief introduction before the first section
3. Each section heading as an H2
4. A conclusion at the end
5. Proper spacing between sections
6. 2-3 relevant markdown formatting elements like bold, italic, blockquotes, or bullet points where appropriate
The blog should maintain the {tone} tone and be targeted at {audience}.
Make it flow naturally between sections."""
)
# Define the nodes for the graph
def get_outline(state: BlogGeneratorState) -> BlogGeneratorState:
"""Generate an outline for the blog post."""
try:
llm = get_llm()
chain = outline_prompt | llm
response = chain.invoke({
"topic": state.topic,
"audience": state.audience,
"tone": state.tone,
"word_count": state.word_count
})
# Parse the outline into a list
output_text = response.content
outline = [line.strip() for line in output_text.split('\n') if line.strip()]
return BlogGeneratorState(**{**state.model_dump(), "outline": outline})
except Exception as e:
st.error(f"Outline Error: {str(e)}")
return BlogGeneratorState(**{**state.model_dump(), "error": f"Error generating outline: {str(e)}"})
def generate_sections(state: BlogGeneratorState) -> BlogGeneratorState:
"""Generate content for each section in the outline."""
if state.error:
return state
sections = {}
section_word_count = state.word_count // len(state.outline)
try:
llm = get_llm()
chain = section_prompt | llm
# Show progress
progress_bar = st.progress(0)
status_text = st.empty()
for i, section in enumerate(state.outline):
status_text.text(f"Generating section {i+1}/{len(state.outline)}: {section}")
response = chain.invoke({
"topic": state.topic,
"section": section,
"audience": state.audience,
"tone": state.tone,
"section_word_count": section_word_count
})
sections[section] = response.content
progress_bar.progress((i + 1) / len(state.outline))
status_text.empty()
progress_bar.empty()
return BlogGeneratorState(**{**state.model_dump(), "sections": sections})
except Exception as e:
return BlogGeneratorState(**{**state.model_dump(), "error": f"Error generating sections: {str(e)}"})
def assemble_blog(state: BlogGeneratorState) -> BlogGeneratorState:
"""Assemble the final blog post in Markdown format."""
if state.error:
return state
try:
llm = get_llm()
chain = final_assembly_prompt | llm
sections_content = "\n\n".join([f"Section: {heading}\nContent: {content}"
for heading, content in state.sections.items()])
response = chain.invoke({
"sections_content": sections_content,
"tone": state.tone,
"audience": state.audience
})
final_blog = response.content
return BlogGeneratorState(**{**state.model_dump(), "final_blog": final_blog})
except Exception as e:
return BlogGeneratorState(**{**state.model_dump(), "error": f"Error assembling blog: {str(e)}"})
# Define the workflow graph
def create_blog_generator_graph():
workflow = StateGraph(BlogGeneratorState)
# Add nodes
workflow.add_node("get_outline", get_outline)
workflow.add_node("generate_sections", generate_sections)
workflow.add_node("assemble_blog", assemble_blog)
# Add edges
workflow.add_edge("get_outline", "generate_sections")
workflow.add_edge("generate_sections", "assemble_blog")
workflow.add_edge("assemble_blog", END)
# Set the entry point
workflow.set_entry_point("get_outline")
return workflow.compile()
# Create the Streamlit app main content
st.title("AI Blog Generator")
st.write("Generate professional blog posts with a structured workflow")
with st.form("blog_generator_form"):
topic = st.text_input("Blog Topic", placeholder="E.g., Sustainable Living in Urban Environments")
col1, col2 = st.columns(2)
with col1:
audience = st.text_input("Target Audience", placeholder="E.g., Young professionals")
tone = st.selectbox("Tone", ["Informative", "Conversational", "Professional", "Inspirational", "Technical"])
with col2:
word_count = st.slider("Approximate Word Count", min_value=300, max_value=2000, value=800, step=100)
submit_button = st.form_submit_button("Generate Blog")
if submit_button:
if (provider == "OpenAI" and not os.environ.get("OPENAI_API_KEY")) or \
(provider == "Groq" and not os.environ.get("GROQ_API_KEY")):
st.error(f"Please enter your {provider} API key in the sidebar before generating a blog")
elif not topic or not audience:
st.error("Please fill out all required fields.")
else:
with st.spinner(f"Initializing blog generation using {provider} {model}..."):
try:
# Initialize the graph
blog_generator = create_blog_generator_graph()
# Set the initial state
initial_state = BlogGeneratorState(
topic=topic,
audience=audience,
tone=tone,
word_count=word_count
)
# Run the graph
result = blog_generator.invoke(initial_state)
# Check if result is a dict and has expected keys
if isinstance(result, dict):
final_blog = result.get("final_blog", "")
outline = result.get("outline", [])
error = result.get("error")
if error:
st.error(f"Error: {error}")
elif final_blog:
# Display the blog post
st.success("Blog post generated successfully!")
st.subheader("Generated Blog Post")
st.markdown(final_blog)
# Download button for the blog post
st.download_button(
label="Download Blog as Markdown",
data=final_blog,
file_name=f"{topic.replace(' ', '_').lower()}_blog.md",
mime="text/markdown",
)
# Show metadata about the generation
st.info(f"Generated using {provider} {model}")
# Optionally show the outline
with st.expander("View Blog Outline"):
for i, section in enumerate(outline, 1):
st.write(f"{i}. {section}")
else:
st.error("Blog generation completed but no content was produced")
else:
st.error(f"Unexpected result type: {type(result)}")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.info("Please check your API key and try again.") |