File size: 23,532 Bytes
a28c751
 
 
 
 
652d812
a28c751
 
 
 
 
652d812
a28c751
 
 
 
9847980
 
 
 
 
652d812
 
 
 
9847980
 
 
 
 
 
 
 
652d812
a28c751
 
 
 
 
 
 
 
 
 
 
 
 
 
652d812
5c49b7e
 
 
 
 
 
 
 
 
 
 
 
 
652d812
 
 
a28c751
 
 
193d7cb
 
 
652d812
193d7cb
369e968
193d7cb
 
 
a28c751
193d7cb
105c20d
a28c751
 
 
 
 
5c49b7e
 
 
 
 
 
 
 
 
 
 
652d812
a28c751
 
 
 
 
 
 
 
369e968
 
0911a8b
a28c751
 
 
 
 
 
 
369e968
a28c751
 
652d812
369e968
a28c751
 
 
 
 
 
 
 
369e968
a28c751
652d812
a28c751
652d812
a28c751
 
 
 
 
369e968
a28c751
5c49b7e
 
 
 
652d812
a28c751
 
652d812
a28c751
652d812
369e968
652d812
 
 
 
 
 
 
 
 
 
a28c751
652d812
a28c751
 
 
 
652d812
a28c751
 
 
 
652d812
a28c751
652d812
a28c751
 
 
 
 
652d812
a28c751
 
 
 
369e968
652d812
a28c751
652d812
a28c751
652d812
a28c751
 
 
369e968
a28c751
 
 
 
652d812
a28c751
 
 
369e968
 
a28c751
 
 
 
 
 
369e968
 
a28c751
 
 
 
 
 
369e968
 
a28c751
 
 
 
 
 
 
369e968
 
a28c751
 
 
 
 
652d812
a28c751
 
 
652d812
369e968
a28c751
 
 
 
 
 
652d812
369e968
a28c751
 
 
 
 
 
 
 
 
652d812
 
 
 
a28c751
 
 
652d812
a28c751
 
652d812
a28c751
 
652d812
a28c751
 
 
652d812
a28c751
 
 
 
369e968
652d812
 
 
 
 
 
a28c751
 
369e968
652d812
a28c751
 
 
 
369e968
a28c751
652d812
a28c751
 
 
652d812
369e968
 
652d812
 
369e968
a28c751
369e968
a28c751
 
 
652d812
 
369e968
652d812
 
 
 
 
369e968
652d812
 
 
 
 
 
 
 
369e968
193d7cb
369e968
a28c751
 
652d812
 
369e968
652d812
a28c751
 
 
369e968
a28c751
 
 
 
652d812
 
 
 
 
 
a28c751
652d812
 
a28c751
369e968
a28c751
 
 
 
652d812
 
 
 
a28c751
652d812
a28c751
652d812
 
 
 
 
 
 
 
 
 
a28c751
652d812
369e968
 
a28c751
369e968
a28c751
369e968
a28c751
 
 
369e968
 
a28c751
 
652d812
369e968
 
 
a28c751
 
652d812
a28c751
 
 
 
369e968
 
a28c751
 
369e968
a28c751
 
 
 
 
 
 
369e968
 
652d812
 
369e968
 
 
652d812
 
369e968
652d812
369e968
652d812
369e968
a28c751
 
369e968
652d812
 
 
 
369e968
 
a28c751
 
 
 
 
369e968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a28c751
 
 
 
 
 
 
 
 
 
369e968
652d812
369e968
652d812
a28c751
652d812
369e968
 
 
 
 
 
 
 
193d7cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# ์•ˆ์ •์ ์ธ AI ์นดํ”ผ๋ผ์ดํ„ฐ - ์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฐ˜ RAG ์‹œ์Šคํ…œ
# Hugging Face Spaces ํ™˜๊ฒฝ ์ตœ์ ํ™” ๋ฒ„์ „

import streamlit as st
import pandas as pd
import numpy # ์ „์—ญ์ ์œผ๋กœ numpy๋ฅผ ๋จผ์ € ์ž„ํฌํŠธํ•ด๋ด…๋‹ˆ๋‹ค.
import pickle
import google.generativeai as genai
import time
import json
import os
import sys # ๋””๋ฒ„๊น…์šฉ sys ๋ชจ๋“ˆ ์ž„ํฌํŠธ
from datetime import datetime

# ํ™˜๊ฒฝ ์„ค์ • (๊ถŒํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ)
os.environ['STREAMLIT_BROWSER_GATHER_USAGE_STATS'] = 'false'

# ์บ์‹œ ๊ฒฝ๋กœ๋ฅผ /tmp ๋กœ ์„ค์ • (Hugging Face Spaces์—์„œ ๊ถŒ์žฅ๋˜๋Š” ์“ฐ๊ธฐ ๊ฐ€๋Šฅ ๊ฒฝ๋กœ)
TMP_DIR = "/tmp"
TRANSFORMERS_CACHE_DIR = os.path.join(TMP_DIR, '.cache', 'transformers')
SENTENCE_TRANSFORMERS_HOME_DIR = os.path.join(TMP_DIR, '.cache', 'sentence_transformers')

os.environ['TRANSFORMERS_CACHE'] = TRANSFORMERS_CACHE_DIR
os.environ['SENTENCE_TRANSFORMERS_HOME'] = SENTENCE_TRANSFORMERS_HOME_DIR

# ์บ์‹œ ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ (์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฉด) - /tmp ์•„๋ž˜๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์ƒ์„ฑ ๊ฐ€๋Šฅ
try:
    os.makedirs(TRANSFORMERS_CACHE_DIR, exist_ok=True)
    os.makedirs(SENTENCE_TRANSFORMERS_HOME_DIR, exist_ok=True)
except PermissionError:
    st.warning(f"โš ๏ธ ์บ์‹œ ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ ๊ถŒํ•œ ์—†์Œ: {TRANSFORMERS_CACHE_DIR} ๋˜๋Š” {SENTENCE_TRANSFORMERS_HOME_DIR}. ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ๊ฐ€ ๋А๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.")
except Exception as e_mkdir:
    st.warning(f"โš ๏ธ ์บ์‹œ ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜: {e_mkdir}")


# ํŽ˜์ด์ง€ ์„ค์ •
st.set_page_config(
    page_title="AI ์นดํ”ผ๋ผ์ดํ„ฐ | RAG ๊ธฐ๋ฐ˜ ๊ด‘๊ณ  ์นดํ”ผ ์ƒ์„ฑ",
    page_icon="โœจ",
    layout="wide",
    initial_sidebar_state="expanded"
)

# ์ œ๋ชฉ ๋ฐ ์„ค๋ช…
st.title("โœจ AI ์นดํ”ผ๋ผ์ดํ„ฐ")
st.markdown("### ๐ŸŽฏ 37,671๊ฐœ ์‹ค์ œ ๊ด‘๊ณ  ์นดํ”ผ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ RAG ์‹œ์Šคํ…œ")
st.markdown("---")

# --- ๋Ÿฐํƒ€์ž„ ํ™˜๊ฒฝ ๋””๋ฒ„๊น… (์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ตœ์ƒ๋‹จ ๋˜๋Š” load_system ๋ฐ”๋กœ ์ „) ---
# st.sidebar.markdown("---")
# st.sidebar.markdown("### โš™๏ธ ๋Ÿฐํƒ€์ž„ ํ™˜๊ฒฝ ์ •๋ณด (๋””๋ฒ„๊น…์šฉ)")
# st.sidebar.text(f"Py Exec: {sys.executable}")
# st.sidebar.text(f"Py Ver: {sys.version.split()[0]}") # ๊ฐ„๋žตํ•˜๊ฒŒ ๋ฒ„์ „๋งŒ
# st.sidebar.text(f"PYTHONPATH: {os.environ.get('PYTHONPATH', 'Not Set')}")
# try:
#    import numpy as np_runtime_check
#    st.sidebar.text(f"NumPy Ver (Runtime): {np_runtime_check.__version__}")
#    import numpy.core._multiarray_umath
#    st.sidebar.markdown("โœ… NumPy core modules imported (Runtime)")
# except Exception as e:
#    st.sidebar.error(f"โŒ NumPy import error (Runtime): {e}")
# st.sidebar.markdown("---")
# --- ๋””๋ฒ„๊น… ์ฝ”๋“œ ๋ ---


# ์‚ฌ์ด๋“œ๋ฐ” ์„ค์ •
st.sidebar.header("๐ŸŽ›๏ธ ์นดํ”ผ ์ƒ์„ฑ ์„ค์ •")

# --- API ํ‚ค ์ฒ˜๋ฆฌ ๋ณ€๊ฒฝ ---
# ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ API ํ‚ค๋ฅผ ์ง์ ‘ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.
api_key_value = os.getenv("GEMINI_API_KEY")

# API ํ‚ค๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ ์•ฑ ์ค‘๋‹จ ๋ฐ ์•ˆ๋‚ด ๋ฉ”์‹œ์ง€ ํ‘œ์‹œ
if not api_key_value:
    st.error(" critical: ๐Ÿ”‘ GEMINI_API_KEY ํ™˜๊ฒฝ ๋ณ€์ˆ˜๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.")
    st.info("Hugging Face Spaces์˜ 'Settings' -> 'Repository secrets'์—์„œ 'GEMINI_API_KEY'๋ฅผ ์ถ”๊ฐ€ํ•ด์ฃผ์„ธ์š”.")
    st.info("์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ž‘๋™ํ•˜๋ ค๋ฉด API ํ‚ค๊ฐ€ ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.")
    st.stop()
# --- API ํ‚ค ์ฒ˜๋ฆฌ ๋ณ€๊ฒฝ ๋ ---

# ์‹œ์Šคํ…œ ์ดˆ๊ธฐํ™” (์บ์‹ฑ) - ์ž„๋ฒ ๋”ฉ ํ•„์ˆ˜!
@st.cache_resource(show_spinner=False)
def load_system():
    """์‹œ์Šคํ…œ ์ปดํฌ๋„ŒํŠธ ๋กœ๋”ฉ - ์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฐ˜ RAG ์‹œ์Šคํ…œ"""

    #st.write("--- load_system() ์‹œ์ž‘ ---")
    #st.write(f"Python Executable (load_system): {sys.executable}")
    #st.write(f"Python Version (load_system): {sys.version}")
    #st.write(f"PYTHONPATH (load_system): {os.environ.get('PYTHONPATH')}")
    #try:
    #    import numpy as np_load_system_check
    #    st.write(f"NumPy version (load_system start): {np_load_system_check.__version__}")
    #    import numpy.core._multiarray_umath
    #    st.write("load_system start: Successfully imported numpy.core._multiarray_umath")
    #except Exception as e:
    #    st.write(f"load_system start: Error importing NumPy parts: {e}")

    progress_container = st.container()

    with progress_container:
        total_progress = st.progress(0)
        status_text = st.empty()

        status_text.text("๐Ÿ”‘ Gemini API ์ดˆ๊ธฐํ™” ์ค‘...")
        try:
            # ์ „์—ญ ๋ณ€์ˆ˜ api_key_value๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์‚ฌ์šฉ
            genai.configure(api_key=api_key_value)
            model_llm = genai.GenerativeModel('gemini-2.5-pro')
            total_progress.progress(10)
            st.success("โœ… Gemini API ์„ค์ • ์™„๋ฃŒ")
        except Exception as e:
            st.error(f"โŒ Gemini API ์„ค์ • ์‹คํŒจ: {e}")
            return None, None, None, None

        status_text.text("๐Ÿค– ํ•œ๊ตญ์–ด ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋”ฉ ์ค‘... (1-2๋ถ„ ์†Œ์š”)")
        embedding_model_instance = None
        try:
            from sentence_transformers import SentenceTransformer
            embedding_model_instance = SentenceTransformer('jhgan/ko-sbert-nli',
                                                cache_folder=SENTENCE_TRANSFORMERS_HOME_DIR)
            total_progress.progress(40)
            st.success("โœ… ํ•œ๊ตญ์–ด ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋”ฉ ์™„๋ฃŒ")
        except Exception as e:
            st.error(f"โŒ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋”ฉ ์‹คํŒจ: {e}")
            st.error("๐Ÿšจ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ์—†์ด๋Š” RAG ์‹œ์Šคํ…œ์ด ์ž‘๋™ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค!")
            return None, None, None, None

        status_text.text("๐Ÿ“Š ์นดํ”ผ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋กœ๋”ฉ ์ค‘...")
        df_data = None
        try:
            df_data = pd.read_excel('๊ด‘๊ณ ์นดํ”ผ๋ฐ์ดํ„ฐ_๋ธŒ๋žœ๋“œ์ถ”์ถœ์™„๋ฃŒ.xlsx')
            total_progress.progress(60)
            st.success(f"โœ… ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์™„๋ฃŒ: {len(df_data):,}๊ฐœ ์นดํ”ผ")
        except Exception as e:
            st.error(f"โŒ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์‹คํŒจ: {e}")
            return None, None, None, None

        status_text.text("๐Ÿ” ๋ฒกํ„ฐ ์ž„๋ฒ ๋”ฉ ๋กœ๋”ฉ ์ค‘... (RAG ์‹œ์Šคํ…œ ํ•ต์‹ฌ)")
        embeddings_array = None
        try:
            #import numpy as np_pickle_check
            #st.write(f"[DEBUG] NumPy version just before pickle.load: {np_pickle_check.__version__}")
            #import numpy.core._multiarray_umath
            #st.write("[DEBUG] Successfully imported numpy.core._multiarray_umath before pickle.load")

            with open('copy_embeddings.pkl', 'rb') as f:
                embeddings_data = pickle.load(f)
            embeddings_array = embeddings_data['embeddings']
            total_progress.progress(90)
            st.success(f"โœ… ์ž„๋ฒ ๋”ฉ ๋กœ๋”ฉ ์™„๋ฃŒ: {embeddings_array.shape[0]:,}๊ฐœ ร— {embeddings_array.shape[1]}์ฐจ์›")
        except ModuleNotFoundError as mnfe:
            st.error(f"โŒ ์ž„๋ฒ ๋”ฉ ๋กœ๋”ฉ ์‹คํŒจ (ModuleNotFoundError): {mnfe}")
            st.error(f"๐Ÿšจ ํ•ด๋‹น ๋ชจ๋“ˆ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. sys.path: {sys.path}")
            st.error("๐Ÿšจ ์ž„๋ฒ ๋”ฉ ์—†์ด๋Š” ์˜๋ฏธ์  ๊ฒ€์ƒ‰์ด ๋ถˆ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค!")
            try:
                import numpy as np_final_check
                st.error(f"[DEBUG] NumPy object at failure: {np_final_check}")
                st.error(f"[DEBUG] NumPy __file__ at failure: {np_final_check.__file__}")
            except Exception as e_np_final:
                st.error(f"[DEBUG] Could not even import numpy at failure: {e_np_final}")
            return None, None, None, None
        except Exception as e:
            st.error(f"โŒ ์ž„๋ฒ ๋”ฉ ๋กœ๋”ฉ ์‹คํŒจ (์ผ๋ฐ˜ ์˜ค๋ฅ˜): {e}")
            st.error("๐Ÿšจ ์ž„๋ฒ ๋”ฉ ์—†์ด๋Š” ์˜๋ฏธ์  ๊ฒ€์ƒ‰์ด ๋ถˆ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค!")
            return None, None, None, None

        status_text.text("โœจ ์‹œ์Šคํ…œ ๊ฒ€์ฆ ์ค‘...")
        if model_llm and embedding_model_instance and df_data is not None and embeddings_array is not None:
            total_progress.progress(100)
            status_text.text("๐ŸŽ‰ RAG ์‹œ์Šคํ…œ ๋กœ๋”ฉ ์™„๋ฃŒ!")
            success_col1, success_col2, success_col3 = st.columns(3)
            with success_col1:
                st.metric("์นดํ”ผ ๋ฐ์ดํ„ฐ", f"{len(df_data):,}๊ฐœ")
            with success_col2:
                st.metric("์ž„๋ฒ ๋”ฉ ์ฐจ์›", f"{embeddings_array.shape[1]}D")
            with success_col3:
                st.metric("๊ฒ€์ƒ‰ ์—”์ง„", "Korean SBERT")
            time.sleep(1)
            total_progress.empty()
            status_text.empty()
            return model_llm, embedding_model_instance, df_data, embeddings_array
        else:
            st.error("โŒ ์‹œ์Šคํ…œ ๋กœ๋”ฉ ์‹คํŒจ: ํ•„์ˆ˜ ๊ตฌ์„ฑ์š”์†Œ ๋ˆ„๋ฝ")
            return None, None, None, None

# ์‹œ์Šคํ…œ ๋กœ๋”ฉ
loaded_model, loaded_embedding_model, loaded_df, loaded_embeddings = None, None, None, None
with st.spinner("๐Ÿš€ AI ์นดํ”ผ๋ผ์ดํ„ฐ ์‹œ์Šคํ…œ ์ดˆ๊ธฐํ™” ์ค‘..."):
    loaded_model, loaded_embedding_model, loaded_df, loaded_embeddings = load_system()

if loaded_model is None or loaded_embedding_model is None or loaded_df is None or loaded_embeddings is None:
    st.error("โŒ ์‹œ์Šคํ…œ์„ ๋กœ๋”ฉํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ํŽ˜์ด์ง€๋ฅผ ์ƒˆ๋กœ๊ณ ์นจํ•˜๊ฑฐ๋‚˜ ๊ด€๋ฆฌ์ž์—๊ฒŒ ๋ฌธ์˜ํ•˜์„ธ์š”.")
    st.stop()

# ์ดํ•˜ UI ๋ฐ ์นดํ”ผ ์ƒ์„ฑ ๋กœ์ง (์ด์ „๊ณผ ๋™์ผํ•˜๊ฒŒ ์œ ์ง€)
# ์‚ฌ์ด๋“œ๋ฐ” ์„ค์ • (์‹œ์Šคํ…œ ๋กœ๋”ฉ ์„ฑ๊ณต ํ›„)
st.sidebar.success("๐ŸŽ‰ RAG ์‹œ์Šคํ…œ ์ค€๋น„ ์™„๋ฃŒ!")

# ์นดํ…Œ๊ณ ๋ฆฌ ์„ ํƒ
categories = ['์ „์ฒด'] + sorted(loaded_df['์นดํ…Œ๊ณ ๋ฆฌ'].unique().tolist())
selected_category = st.sidebar.selectbox(
    "๐Ÿ“‚ ์นดํ…Œ๊ณ ๋ฆฌ",
    categories,
    help="ํŠน์ • ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๊ฒ€์ƒ‰์„ ์ œํ•œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค",
    key="category_selectbox" # ํ‚ค ์ถ”๊ฐ€
)

# ํƒ€๊ฒŸ ๊ณ ๊ฐ ์„ค์ •
target_audience = st.sidebar.selectbox(
    "๐ŸŽฏ ํƒ€๊ฒŸ ๊ณ ๊ฐ",
    ['20๋Œ€', '30๋Œ€', '์ผ๋ฐ˜', '10๋Œ€', '40๋Œ€', '50๋Œ€+', '๋‚จ์„ฑ', '์—ฌ์„ฑ', '์ง์žฅ์ธ', 'ํ•™์ƒ', '์ฃผ๋ถ€'],
    help="ํƒ€๊ฒŸ ๊ณ ๊ฐ์— ๋งž๋Š” ํ†ค์•ค๋งค๋„ˆ๋กœ ์นดํ”ผ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค",
    key="target_audience_selectbox" # ํ‚ค ์ถ”๊ฐ€
)

# ๋ธŒ๋žœ๋“œ ํ†ค์•ค๋งค๋„ˆ
brand_tone = st.sidebar.selectbox(
    "๐ŸŽจ ๋ธŒ๋žœ๋“œ ํ†ค",
    ['์„ธ๋ จ๋œ', '์นœ๊ทผํ•œ', '๊ณ ๊ธ‰์Šค๋Ÿฌ์šด', 'ํ™œ๊ธฐ์ฐฌ', '์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š”', '์ Š์€', '๋”ฐ๋œปํ•œ', '์ „๋ฌธ์ ์ธ'],
    help="์›ํ•˜๋Š” ๋ธŒ๋žœ๋“œ ์ด๋ฏธ์ง€๋ฅผ ์„ ํƒํ•˜์„ธ์š”",
    key="brand_tone_selectbox" # ํ‚ค ์ถ”๊ฐ€
)

# ์ฐฝ์˜์„ฑ ์ˆ˜์ค€
creative_level = st.sidebar.select_slider(
    "๐Ÿง  ์ฐฝ์˜์„ฑ ์ˆ˜์ค€",
    options=['๋ณด์ˆ˜์ ', '๊ท ํ˜•', '์ฐฝ์˜์ '],
    value='๊ท ํ˜•',
    help="๋ณด์ˆ˜์ : ์•ˆ์ „ํ•œ ํ‘œํ˜„, ์ฐฝ์˜์ : ๋…์ฐฝ์  ํ‘œํ˜„",
    key="creative_level_slider" # ํ‚ค ์ถ”๊ฐ€
)

# ๋ฉ”์ธ ์ž…๋ ฅ ์˜์—ญ
st.markdown("## ๐Ÿ’ญ ์–ด๋–ค ์นดํ”ผ๋ฅผ ๋งŒ๋“ค๊ณ  ์‹ถ์œผ์‹ ๊ฐ€์š”?")

user_request = "" # ์ดˆ๊ธฐํ™”
input_method = st.radio(
    "์ž…๋ ฅ ๋ฐฉ์‹ ์„ ํƒ:",
    ["์ง์ ‘ ์ž…๋ ฅ", "ํ…œํ”Œ๋ฆฟ ์„ ํƒ"],
    horizontal=True,
    key="input_method_radio"
)

if input_method == "์ง์ ‘ ์ž…๋ ฅ":
    user_request = st.text_area(
        "์นดํ”ผ ์š”์ฒญ์„ ์ž์„ธํžˆ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”:",
        placeholder="์˜ˆ: 30๋Œ€ ์ง์žฅ ์—ฌ์„ฑ์šฉ ํ”„๋ฆฌ๋ฏธ์—„ ์Šคํ‚จ์ผ€์–ด ์‹ ์ œํ’ˆ ๋Ÿฐ์นญ ์นดํ”ผ",
        height=100,
        key="user_request_direct"
    )
else:
    templates = {
        "์‹ ์ œํ’ˆ ๋Ÿฐ์นญ": "๋Œ€์ƒ {์นดํ…Œ๊ณ ๋ฆฌ} ์‹ ์ œํ’ˆ ๋Ÿฐ์นญ ์นดํ”ผ",
        "ํ• ์ธ ์ด๋ฒคํŠธ": "{์นดํ…Œ๊ณ ๋ฆฌ} ํ• ์ธ ์ด๋ฒคํŠธ ํ”„๋กœ๋ชจ์…˜ ์นดํ”ผ",
        "๋ธŒ๋žœ๋“œ ์Šฌ๋กœ๊ฑด": "{์นดํ…Œ๊ณ ๋ฆฌ} ๋ธŒ๋žœ๋“œ์˜ ๋Œ€ํ‘œ ์Šฌ๋กœ๊ฑด",
        "์•ฑ/์„œ๋น„์Šค ๋ฆฌ๋‰ด์–ผ": "{์„œ๋น„์Šค๋ช…} ์ƒˆ ๋ฒ„์ „ ์ถœ์‹œ ์นดํ”ผ",
        "์‹œ์ฆŒ ํ•œ์ •": "{์‹œ์ฆŒ} ํ•œ์ • {์นดํ…Œ๊ณ ๋ฆฌ} ํŠน๋ณ„ ์—๋””์…˜ ์นดํ”ผ"
    }
    selected_template = st.selectbox("ํ…œํ”Œ๋ฆฟ ์„ ํƒ:", list(templates.keys()), key="template_selectbox")
    template_category = ""
    service_name = ""
    season = ""

    col1, col2 = st.columns(2)
    with col1:
        template_category = st.text_input("์ œํ’ˆ/์„œ๋น„์Šค:", value="", key="template_category_input")
    with col2:
        if selected_template == "์•ฑ/์„œ๋น„์Šค ๋ฆฌ๋‰ด์–ผ":
            service_name = st.text_input("์„œ๋น„์Šค๋ช…:", placeholder="์˜ˆ: ๋ฐฐ๋‹ฌ์•ฑ, ๊ธˆ์œต์•ฑ", key="template_service_name_input")
            user_request = templates[selected_template].format(์„œ๋น„์Šค๋ช…=service_name)
        elif selected_template == "์‹œ์ฆŒ ํ•œ์ •":
            season = st.selectbox("์‹œ์ฆŒ:", ["๋ด„", "์—ฌ๋ฆ„", "๊ฐ€์„", "๊ฒจ์šธ", "ํฌ๋ฆฌ์Šค๋งˆ์Šค", "์‹ ๋…„"], key="template_season_selectbox")
            user_request = templates[selected_template].format(์‹œ์ฆŒ=season, ์นดํ…Œ๊ณ ๋ฆฌ=template_category)
        else:
            user_request = templates[selected_template].format(์นดํ…Œ๊ณ ๋ฆฌ=template_category)
    st.text_area("์ƒ์„ฑ๋œ ์š”์ฒญ:", value=user_request, height=80, disabled=True, key="generated_request_template")


# ๊ณ ๊ธ‰ ์˜ต์…˜
with st.expander("๐Ÿ”ง ๊ณ ๊ธ‰ ์˜ต์…˜"):
    col1_adv, col2_adv = st.columns(2)
    with col1_adv:
        num_concepts = st.slider("์ƒ์„ฑํ•  ์ปจ์…‰ ์ˆ˜:", 1, 5, 3, key="num_concepts_slider")
        min_similarity = st.slider("์ตœ์†Œ ์œ ์‚ฌ๋„:", 0.0, 1.0, 0.3, 0.1, key="min_similarity_slider")
    with col2_adv:
        show_references = st.checkbox("์ฐธ๊ณ  ์นดํ”ผ ๋ณด๊ธฐ", value=True, key="show_references_checkbox")
        num_references = st.slider("์ฐธ๊ณ  ์นดํ”ผ ์ˆ˜:", 3, 10, 5, key="num_references_slider")

# RAG ์นดํ”ผ ์ƒ์„ฑ ํ•จ์ˆ˜ (์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฐ˜ ํ•„์ˆ˜!)
def generate_copy_with_rag(user_req, category_filter, target_aud, brand_tn, creative_lvl, num_con):
    if not user_req.strip():
        st.error("โŒ ์นดํ”ผ ์š”์ฒญ์„ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”")
        return None

    progress_bar = st.progress(0)
    status_text_gen = st.empty()

    status_text_gen.text("๐Ÿ” ์˜๋ฏธ์  ๊ฒ€์ƒ‰ ์ค‘... (RAG ํ•ต์‹ฌ ๊ธฐ๋Šฅ)")
    progress_bar.progress(20)

    try:
        search_query = f"{user_req} {target_aud} ๊ด‘๊ณ  ์นดํ”ผ"
        from sklearn.metrics.pairwise import cosine_similarity
        query_embedding = loaded_embedding_model.encode([search_query])

        if category_filter != '์ „์ฒด':
            filtered_df_gen = loaded_df[loaded_df['์นดํ…Œ๊ณ ๋ฆฌ'] == category_filter].copy()
        else:
            filtered_df_gen = loaded_df.copy()

        progress_bar.progress(40)

        if filtered_df_gen.empty:
            st.warning(f"โš ๏ธ ์„ ํƒํ•˜์‹  ์นดํ…Œ๊ณ ๋ฆฌ '{category_filter}'์— ํ•ด๋‹นํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")
            progress_bar.empty(); status_text_gen.empty(); return None

        filtered_indices = filtered_df_gen.index.tolist()
        valid_indices_for_embedding = [idx for idx in filtered_indices if idx < len(loaded_embeddings)]
        if not valid_indices_for_embedding:
            st.warning(f"โš ๏ธ ์œ ํšจํ•œ ์ธ๋ฑ์Šค๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์–ด ์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. (์นดํ…Œ๊ณ ๋ฆฌ: {category_filter})")
            progress_bar.empty(); status_text_gen.empty(); return None

        filtered_embeddings_for_search = loaded_embeddings[valid_indices_for_embedding]
        if query_embedding.shape[1] != filtered_embeddings_for_search.shape[1]:
             st.error(f"โŒ ์ž„๋ฒ ๋”ฉ ์ฐจ์› ๋ถˆ์ผ์น˜: ์ฟผ๋ฆฌ({query_embedding.shape[1]}D), ๋ฌธ์„œ({filtered_embeddings_for_search.shape[1]}D)")
             return None

        similarities = cosine_similarity(query_embedding, filtered_embeddings_for_search)[0]
        num_to_select = min(num_references, len(similarities))
        # numpy๋ฅผ ์—ฌ๊ธฐ์„œ ๋‹ค์‹œ ์ž„ํฌํŠธํ•˜์—ฌ ์‚ฌ์šฉ (np ๋ณ„์นญ ์‚ฌ์šฉ)
        import numpy as np_generate_rag
        top_similarity_indices = np_generate_rag.argsort(similarities)[::-1][:num_to_select]

        reference_copies = []
        for i in top_similarity_indices:
            original_df_idx = valid_indices_for_embedding[i]
            row = loaded_df.iloc[original_df_idx]
            if similarities[i] >= min_similarity:
                reference_copies.append({
                    'copy': row['์นดํ”ผ ๋‚ด์šฉ'],
                    'brand': row['๋ธŒ๋žœ๋“œ'],
                    'similarity': float(similarities[i])
                })
        progress_bar.progress(60)

        if not reference_copies:
            references_text_for_prompt = "์œ ์‚ฌ๋„ ๋†’์€ ์ฐธ๊ณ  ์นดํ”ผ๋ฅผ ์ฐพ์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค."
        else:
            references_text_for_prompt = "\n".join([
                f"{j+1}. \"{ref['copy']}\" - {ref['brand']} (์œ ์‚ฌ๋„: {ref['similarity']:.3f})"
                for j, ref in enumerate(reference_copies)
            ])

        status_text_gen.text("๐Ÿค– AI ์นดํ”ผ ์ƒ์„ฑ ์ค‘...")
        progress_bar.progress(80)
        creativity_guidance = {
            "๋ณด์ˆ˜์ ": "์•ˆ์ „ํ•˜๊ณ  ๊ฒ€์ฆ๋œ ํ‘œํ˜„์„ ์‚ฌ์šฉํ•˜์—ฌ", "๊ท ํ˜•": "์ฐฝ์˜์ ์ด๋ฉด์„œ๋„ ์ ์ ˆํ•œ ์ˆ˜์ค€์—์„œ",
            "์ฐฝ์˜์ ": "๋…์ฐฝ์ ์ด๊ณ  ํ˜์‹ ์ ์ธ ํ‘œํ˜„์œผ๋กœ"
        }
        prompt = f"""
๋‹น์‹ ์€ ํ•œ๊ตญ์˜ ์ „๋ฌธ ๊ด‘๊ณ  ์นดํ”ผ๋ผ์ดํ„ฐ์ž…๋‹ˆ๋‹ค.
**์š”์ฒญ์‚ฌํ•ญ:** {user_req}
**ํƒ€๊ฒŸ ๊ณ ๊ฐ:** {target_aud}
**๋ธŒ๋žœ๋“œ ํ†ค:** {brand_tn}
**์ฐฝ์˜์„ฑ ์ˆ˜์ค€:** {creative_lvl} ({creativity_guidance[creative_lvl]})
**์ฐธ๊ณ  ์นดํ”ผ๋“ค (์˜๋ฏธ์  ์œ ์‚ฌ๋„ ๊ธฐ๋ฐ˜ ์„ ๋ณ„):**
{references_text_for_prompt}
**์ž‘์„ฑ ๊ฐ€์ด๋“œ๋ผ์ธ:**
1. ์œ„ ์ฐธ๊ณ  ์นดํ”ผ๋“ค์˜ ์Šคํƒ€์ผ๊ณผ ํ†ค์„ ๋ถ„์„ํ•˜๊ณ , ์š”์ฒญ์‚ฌํ•ญ์— ๋งž์ถฐ ์ƒˆ๋กœ์šด ์นดํ”ผ {num_con}๊ฐœ๋ฅผ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.
2. ๋งŒ์•ฝ ์ฐธ๊ณ  ์นดํ”ผ๊ฐ€ ์—†๋‹ค๋ฉด, ์š”์ฒญ์‚ฌํ•ญ๊ณผ ํƒ€๊ฒŸ ๊ณ ๊ฐ, ๋ธŒ๋žœ๋“œ ํ†ค, ์ฐฝ์˜์„ฑ ์ˆ˜์ค€์—๋งŒ ์ง‘์ค‘ํ•˜์—ฌ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.
3. ๊ฐ ์นดํ”ผ๋Š” ํ•œ๊ตญ์–ด๋กœ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ๋งค๋ ฅ์ ์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
4. {target_aud}์—๊ฒŒ ์–ดํ•„ํ•  ์ˆ˜ ์žˆ๋Š” ํ‘œํ˜„์„ ์‚ฌ์šฉํ•ด์ฃผ์„ธ์š”.
5. {brand_tn} ํ†ค์•ค๋งค๋„ˆ๋ฅผ ์œ ์ง€ํ•ด์ฃผ์„ธ์š”.
**์ถœ๋ ฅ ํ˜•์‹ (๊ฐ ์นดํ”ผ์™€ ๊ฐ„๋‹จํ•œ ์„ค๋ช… ํฌํ•จ):**
1. [์ƒ์„ฑ๋œ ์นดํ”ผ 1]
   - ์„ค๋ช…: (์ด ์นดํ”ผ๊ฐ€ ์™œ ํšจ๊ณผ์ ์ธ์ง€ ๋˜๋Š” ์–ด๋–ค ์˜๋„๋กœ ์ž‘์„ฑ๋˜์—ˆ๋Š”์ง€)
... (์š”์ฒญํ•œ ์ปจ์…‰ ์ˆ˜๋งŒํผ ๋ฐ˜๋ณต)
**์ถ”์ฒœ ์นดํ”ผ:** (์œ„ ์ƒ์„ฑ๋œ ์นดํ”ผ ์ค‘ ๊ฐ€์žฅ ์ถ”์ฒœํ•˜๋Š” ๊ฒƒ ํ•˜๋‚˜์™€ ๊ทธ ์ด์œ )
"""
        response = loaded_model.generate_content(prompt)
        progress_bar.progress(100); status_text_gen.text("โœ… ์™„๋ฃŒ!"); time.sleep(0.5)
        progress_bar.empty(); status_text_gen.empty()
        return {
            'references': reference_copies, 'generated_content': response.text,
            'search_info': {
                'query': search_query, 'total_candidates': len(filtered_df_gen),
                'selected_references': len(reference_copies)
            },
            'settings': {
                'category': category_filter, 'target': target_aud,
                'tone': brand_tn, 'creative': creative_lvl
            }
        }
    except Exception as e_gen:
        st.error(f"โŒ ์นดํ”ผ ์ƒ์„ฑ ์‹คํŒจ: {e_gen}"); st.error(f"์˜ค๋ฅ˜ ํƒ€์ž…: {type(e_gen)}")
        import traceback; st.error(traceback.format_exc())
        progress_bar.empty(); status_text_gen.empty(); return None

# ์ƒ์„ฑ ๋ฒ„ํŠผ
if st.button("๐Ÿš€ ์นดํ”ผ ์ƒ์„ฑํ•˜๊ธฐ", type="primary", use_container_width=True, key="generate_button"):
    if not user_request or not user_request.strip():
        st.error("โŒ ์นดํ”ผ ์š”์ฒญ์„ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”")
    else:
        result = generate_copy_with_rag(
            user_req=user_request, category_filter=selected_category, target_aud=target_audience,
            brand_tn=brand_tone, creative_lvl=creative_level, num_con=num_concepts
        )
        if result:
            st.markdown("## ๐ŸŽ‰ ์ƒ์„ฑ๋œ ์นดํ”ผ"); st.markdown("---")
            st.info(f"๐Ÿ” **๊ฒ€์ƒ‰ ์ •๋ณด**: {result['search_info']['total_candidates']:,}๊ฐœ ํ›„๋ณด์—์„œ "
                   f"{result['search_info']['selected_references']}๊ฐœ ์ฐธ๊ณ  ์นดํ”ผ ์„ ๋ณ„")
            if show_references and result['references']:
                with st.expander("๐Ÿ“š ์ฐธ๊ณ ํ•œ ์นดํ”ผ๋“ค (์˜๋ฏธ์  ์œ ์‚ฌ๋„ ๊ธฐ๋ฐ˜ ์„ ๋ณ„)"):
                    for i, ref in enumerate(result['references'], 1):
                        st.markdown(f"**{i}.** \"{ref['copy']}\"")
                        st.markdown(f"   - ๋ธŒ๋žœ๋“œ: {ref['brand']}")
                        st.markdown(f"   - ์œ ์‚ฌ๋„: {ref['similarity']:.3f}"); st.markdown("")
            st.markdown("### โœจ AI๊ฐ€ ์ƒ์„ฑํ•œ ์นดํ”ผ:"); st.markdown(result['generated_content'])
            try:
                result_json = json.dumps({
                    'timestamp': datetime.now().isoformat(), 'request': user_request,
                    'settings': result['settings'], 'search_info': result['search_info'],
                    'generated_content': result['generated_content'], 'references': result['references']
                }, ensure_ascii=False, indent=2)
                st.download_button(
                    label="๐Ÿ’พ ๊ฒฐ๊ณผ ๋‹ค์šด๋กœ๋“œ (JSON)", data=result_json,
                    file_name=f"copy_result_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
                    mime="application/json", key="download_button"
                )
            except Exception as e_json: st.error(f"โŒ ๊ฒฐ๊ณผ ๋‹ค์šด๋กœ๋“œ ํŒŒ์ผ ์ƒ์„ฑ ์‹คํŒจ: {e_json}")

# ์‹œ์Šคํ…œ ์ •๋ณด (์‚ฌ์ด๋“œ๋ฐ” ํ•˜๋‹จ)
st.sidebar.markdown("---"); st.sidebar.markdown("### ๐Ÿ“Š RAG ์‹œ์Šคํ…œ ์ •๋ณด")
if loaded_df is not None and loaded_embeddings is not None:
    st.sidebar.markdown(f"**์นดํ”ผ ๋ฐ์ดํ„ฐ**: {len(loaded_df):,}๊ฐœ")
    st.sidebar.markdown(f"**์นดํ…Œ๊ณ ๋ฆฌ**: {loaded_df['์นดํ…Œ๊ณ ๋ฆฌ'].nunique()}๊ฐœ")
    st.sidebar.markdown(f"**๋ธŒ๋žœ๋“œ**: {loaded_df['๋ธŒ๋žœ๋“œ'].nunique()}๊ฐœ")
    st.sidebar.markdown(f"**์ž„๋ฒ ๋”ฉ**: {loaded_embeddings.shape[1]}์ฐจ์›")
    st.sidebar.markdown("**๊ฒ€์ƒ‰ ์—”์ง„**: Korean SBERT"); st.sidebar.markdown("**ํ˜ธ์ŠคํŒ…**: ๐Ÿค— Hugging Face")

# ์‚ฌ์šฉ๋ฒ• ๊ฐ€์ด๋“œ
with st.expander("๐Ÿ’ก RAG ์‹œ์Šคํ…œ ์‚ฌ์šฉ๋ฒ• ๊ฐ€์ด๋“œ"):
    st.markdown("""
    ### ๐ŸŽฏ ํšจ๊ณผ์ ์ธ ์‚ฌ์šฉ๋ฒ•
    **1. ๊ตฌ์ฒด์ ์ธ ์š”์ฒญํ•˜๊ธฐ:**
    - โŒ "์นดํ”ผ ์จ์ค˜"
    - โœ… "30๋Œ€ ์ง์žฅ ์—ฌ์„ฑ์šฉ ํ”„๋ฆฌ๋ฏธ์—„ ์Šคํ‚จ์ผ€์–ด ์‹ ์ œํ’ˆ ๋Ÿฐ์นญ ์นดํ”ผ"
    **2. RAG ์‹œ์Šคํ…œ์˜ ์žฅ์ :**
    - ๐Ÿง  **์˜๋ฏธ์  ๊ฒ€์ƒ‰**: ํ‚ค์›Œ๋“œ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์˜๋ฏธ๊นŒ์ง€ ์ดํ•ด
    - ๐ŸŽฏ **๋ฌธ๋งฅ ๋งค์นญ**: ํƒ€๊ฒŸ๊ณผ ์ƒํ™ฉ์— ๋งž๋Š” ์นดํ”ผ ์ž๋™ ์„ ๋ณ„
    - ๐Ÿ“Š **๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜**: 37,671๊ฐœ ์‹ค์ œ ์นดํ”ผ์—์„œ ํ•™์Šตํ•œ ํŒจํ„ด
    **3. ์ฐฝ์˜์„ฑ ์กฐ์ ˆ:**
    - **๋ณด์ˆ˜์ **: ์•ˆ์ „ํ•œ ํด๋ผ์ด์–ธํŠธ, ๊ฒ€์ฆ๋œ ์ ‘๊ทผ
    - **๊ท ํ˜•**: ์ผ๋ฐ˜์ ์ธ ํ”„๋กœ์ ํŠธ (์ถ”์ฒœ!)
    - **์ฐฝ์˜์ **: ํ˜์‹ ์  ๋ธŒ๋žœ๋“œ, ํŒŒ๊ฒฉ์  ์บ ํŽ˜์ธ
    **4. ์ฐธ๊ณ  ์นดํ”ผ ํ™œ์šฉ:**
    - ์ƒ์„ฑ๋œ ์นดํ”ผ์™€ ์ฐธ๊ณ  ์นดํ”ผ๋ฅผ ๋น„๊ต ๋ถ„์„
    - ํŠธ๋ Œ๋“œ์™€ ํŒจํ„ด ํŒŒ์•… ๊ฐ€๋Šฅ
    - ๊ฒฝ์Ÿ์‚ฌ ๋ถ„์„ ์ž๋ฃŒ๋กœ ํ™œ์šฉ
    """)

# ํ‘ธํ„ฐ
st.markdown("---")
st.markdown(
    "๐Ÿ’ก **AI ์นดํ”ผ๋ผ์ดํ„ฐ** | 37,671๊ฐœ ์‹ค์ œ ๊ด‘๊ณ  ์นดํ”ผ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ | "
    "RAG(๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ) ์‹œ์Šคํ…œ powered by Korean SBERT + Gemini AI"
)

# ์„ฑ๋Šฅ ๋ชจ๋‹ˆํ„ฐ๋ง (๊ฐœ๋ฐœ์ž์šฉ)
if os.getenv("DEBUG_MODE") == "true":
    st.sidebar.markdown("### ๐Ÿ”ง ๋””๋ฒ„๊ทธ ์ •๋ณด (ํ™œ์„ฑํ™”๋จ)")
    if 'loaded_embeddings' in locals() and loaded_embeddings is not None:
        st.sidebar.write(f"์ž„๋ฒ ๋”ฉ ๋ฉ”๋ชจ๋ฆฌ: {loaded_embeddings.nbytes / (1024*1024):.1f}MB")
    st.sidebar.write(f"Streamlit ๋ฒ„์ „: {st.__version__}")
    st.sidebar.write(f"Pandas ๋ฒ„์ „: {pd.__version__}")
    # np ๋ณ„์นญ์ด ๋กœ์ปฌ์—์„œ ์ •์˜๋˜์–ด ์žˆ์ง€ ์•Š์„ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, import๋œ numpy ์‚ฌ์šฉ
    try:
        import numpy as np_debug_version
        st.sidebar.write(f"Numpy ๋ฒ„์ „ (Global): {np_debug_version.__version__}")
    except ImportError:
        st.sidebar.write("Numpy ๋ฒ„์ „ (Global): Not imported or error")

    # torch๋Š” ์ง์ ‘ ์‚ฌ์šฉํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ, sentence_transformers ๋‚ด๋ถ€ ๋ฒ„์ „์„ ์•Œ๊ธฐ๋Š” ์–ด๋ ค์›€
    st.sidebar.write(f"google-generativeai ๋ฒ„์ „: {genai.__version__}")