File size: 1,821 Bytes
60c3115
2df1810
 
60c3115
 
 
 
 
 
 
2df1810
 
60c3115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2df1810
 
 
 
60c3115
2df1810
 
 
 
 
 
 
 
 
60c3115
 
2df1810
 
 
 
 
 
 
 
 
 
 
 
60c3115
 
 
 
2df1810
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
from unsloth import FastLanguageModel
from transformers import TrainingArguments, Trainer
from datasets import load_dataset
import torch

# Validate environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN environment variable not set")

# Load quantized model
try:
    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name="deepseek-ai/DeepSeek-V3",
        dtype=torch.bfloat16,
        load_in_4bit=True,
        token=HF_TOKEN
    )
    FastLanguageModel.for_training(model)
except Exception as e:
    raise RuntimeError(f"Failed to load model: {str(e)}")

# Load and prepare dataset (example - replace with your actual dataset)
try:
    dataset = load_dataset("imdb")  # Example dataset
    tokenized_dataset = dataset.map(
        lambda x: tokenizer(x["text"], truncation=True, padding="max_length"),
        batched=True
    )
except Exception as e:
    raise RuntimeError(f"Failed to load/prepare dataset: {str(e)}")

# Training arguments
training_args = TrainingArguments(
    output_dir="/app/checkpoints",
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    num_train_epochs=2,
    learning_rate=2e-5,
    save_steps=500,
    save_total_limit=2,
    evaluation_strategy="steps",
    eval_steps=500,
    logging_dir="/app/logs",
    logging_steps=100,
    fp16=False,
    bf16=True,
    deepspeed="/app/ds_config.json"
)

# Initialize trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset["train"],
    eval_dataset=tokenized_dataset["test"]
)

# Train
try:
    trainer.train()
except Exception as e:
    raise RuntimeError(f"Training failed: {str(e)}")

# Save model
model.save_pretrained("/app/fine_tuned_model")
tokenizer.save_pretrained("/app/fine_tuned_model")