ntu-project / app.py
pcreem's picture
init
ed14d2a
import pandas as pd
import numpy as np
import faiss
import pickle
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from llama_cpp import Llama
import gradio as gr
# =========================
# STEP 1: 載入 Hugging Face Dataset
# =========================
dataset = load_dataset("pcreem/37", split="train")
df = dataset.to_pandas()
df.columns = df.columns.str.strip() # 清理欄位空白
def make_passage(row):
return f"""藥品名稱:{row['中文品名']}
英文品名:{row['英文品名']}
主成分:{row['主成分略述']}
劑型:{row['劑型']}
適應症:{row['適應症']}
用法用量:{row['用法用量']}
申請商:{row['申請商名稱']}
製造商:{row['製造商名稱']}
製造廠地址:{row['製造廠廠址']}
包裝:{row['包裝']}
有效日期:{row['有效日期']}
許可證字號:{row['許可證字號']}"""
df["retrieval_passage"] = df.apply(make_passage, axis=1)
passages = df["retrieval_passage"].tolist()
# =========================
# STEP 2: 建立 FAISS 檢索
# =========================
embedding_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
embeddings = embedding_model.encode(passages, show_progress_bar=True)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings).astype("float32"))
# =========================
# STEP 3: 載入 Llama 模型
# =========================
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(
repo_id="chienweichang/Llama-3-Taiwan-8B-Instruct-GGUF",
filename="llama-3-taiwan-8B-instruct-q5_1.gguf"
)
llm = Llama(
model_path=model_path,
n_gpu_layers=35,
n_ctx=2048,
seed=42,
verbose=False,
)
# =========================
# STEP 4: 定義查詢函式
# =========================
def rag_qa(query, k=3):
query_embedding = embedding_model.encode([query])
D, I = index.search(np.array(query_embedding).astype("float32"), k=k)
top_passages = [passages[idx] for idx in I[0]]
context = "\n\n---\n\n".join(top_passages)
system_prompt = "你是一位專業藥師,根據以下藥品資料,回答使用者的問題,請用簡潔中文說明並避免虛構資訊。\n"
user_prompt = f"{system_prompt}\n以下是參考資料:\n\n{context}\n\n使用者問題:{query}"
chat_prompt = f"<|start_header_id|>user<|end_header_id|>\n{user_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
output = llm(chat_prompt, max_tokens=512, temperature=0.7, top_p=0.9, stop=["<|eot_id|>"])
answer = output["choices"][0]["text"]
return answer.strip()
# =========================
# STEP 5: Gradio 介面
# =========================
gr.Interface(
fn=rag_qa,
inputs=gr.Textbox(label="請輸入問題", placeholder="例如:感冒藥有什麼選擇?"),
outputs=gr.Textbox(label="藥師回答"),
title="台灣藥品問答系統",
description="輸入藥品相關問題,我會根據台灣合法藥品資料庫回答你!"
).launch()