github-actions[bot]
🚀 Deploy method comparison app from GH action
8a5c1ae

A newer version of the Gradio SDK is available: 5.42.0

Upgrade

Base Model Inference Caching

The benchmarking suite uses a separate script, run_base.py, to measure base model inference times and save results for reuse. This should be run once per model configuration to avoid redundant computations and ensure consistent baseline metrics for all PEFT experiments.

Usage:

python run_base.py

This will cache the base model inference results for the specified configuration. Subsequent runs of run.py will automatically load these cached results.

PEFT Benchmarking Suite

This directory contains a comprehensive benchmarking framework for Parameter-Efficient Fine-Tuning (PEFT) methods. For the task of text generation, the suite measures inference performance, memory usage, and other key metrics across different PEFT configurations.

Overview

The benchmarking suite provides:

  • Inference time measurement across different prompt categories
  • Memory usage during inference (RAM and GPU)
  • Parameter efficiency metrics (trainable vs total parameters)
  • Time per token analysis for fair comparison across different generation lengths
  • Structured result logging with detailed metadata

Architecture

The suite follows a clean separation between:

  1. Default benchmark configuration - shared settings for consistent comparison
  2. Individual adapter configurations - PEFT-specific parameters for each experiment

This ensures that all experiments are comparable while allowing flexibility in adapter parameters.

Quick Start

Running a Single Experiment

# From the peft_bench directory
python run.py experiments/lora/lora_r8 --verbose

Configuration Structure

The benchmarking suite uses a hierarchical configuration system:

  1. Default benchmark parameters (default_benchmark_params.json) - Base configuration shared by all experiments
  2. Experiment-specific overrides (benchmark_params.json in each experiment) - Optional overrides for specific experiments
  3. Adapter configuration (adapter_config.json in each experiment) - PEFT method parameters

This structure ensures consistent comparison while allowing flexibility where needed.

Default Configuration (default_benchmark_params.json)

Contains shared benchmark settings that apply to all experiments. Here are the key configuration fields:

  • model_id: The Hugging Face model ID to use as the base model (e.g., "facebook/opt-350m")
  • dtype: Model precision ("float16", "float32", or "bfloat16")
  • seed: Random seed for reproducibility
  • max_new_tokens: Maximum number of tokens to generate during inference
  • num_inference_runs: Number of inference runs per prompt for statistical reliability
  • use_4bit: Whether to use 4-bit quantization (bool)
  • use_8bit: Whether to use 8-bit quantization (bool)

Each experiment can override these settings by providing its own benchmark_params.json file.

Experiment Structure

Each experiment directory should contain:

  1. adapter_config.json: PEFT adapter configuration. For details on available parameters and their meanings, refer to the PEFT documentation.

  2. (Optional) benchmark_params.json: Override specific benchmark parameters for this experiment.

Example directory structure:

experiments/
└── lora/
    ├── lora_r8/                # LoRA rank 8 experiment
    │   ├── adapter_config.json # PEFT adapter configuration
    │   └── benchmark_params.json # Optional benchmark overrides
    └── lora_r16/               # LoRA rank 16 experiment
        └── adapter_config.json

Experiment-Specific Overrides Example

If an experiment needs different benchmark settings, create benchmark_params.json:

{
    "_comment": "Override settings for this specific experiment",
    "max_new_tokens": 50,
    "num_inference_runs": 15,
    "num_prompt_samples": 2
}

These parameters will override the defaults from default_benchmark_params.json. However, the defaults should generally not be changed to keep the results from the individual experiments comparable.

Create a New Experiment Adapter Configuration

To create a new experiment, follow these steps:

  1. Create the experiment directory

    mkdir -p experiments/lora/lora_r8
    
  2. Generate the adapter configuration programmatically Use the PEFT library to create and save your adapter config:

    from peft import LoraConfig
    
    config = LoraConfig(
        lora_alpha=16,
        lora_dropout=0.1,
        r=8,
        target_modules=["q_proj", "v_proj"],
        task_type="CAUSAL_LM"
    )
    config.save_pretrained("experiments/lora/lora_r8")
    

    This will create an adapter_config.json in your experiment directory. Adjust parameters as needed for your experiment.

  3. (Optional) Add benchmark overrides If you need to override default benchmark settings, create a benchmark_params.json in the same directory.

  4. Run the benchmark

    python run.py experiments/lora/lora_r8 --verbose
    

Prompt Categories

The benchmark automatically runs across all prompt categories for consistent comparison:

  • short - Brief prompts (1-2 sentences)
  • medium - Moderate length prompts (paragraph-level)
  • long - Extended prompts (multiple paragraphs)

Results are tracked separately for each category, allowing analysis of how different PEFT methods perform across varying input lengths.

Results Structure

Results are saved in a structured JSON format with three main sections:

run_info

  • Execution metadata (timestamp, duration, status)
  • Hardware information (GPU type, CUDA version, etc.)
  • Error information (if applicable)
  • PEFT and benchmark configurations

generation_info

  • Memory usage logs at different stages
  • Per-category metrics (inference time, time per token, etc.)
  • Overall aggregated metrics
  • Individual sample results for detailed analysis

meta_info

  • Model information (ID, PEFT method)
  • Parameter counts (adapter, total, ratio)
  • Model size information (base model, adapter)
  • System and package information

Key Metrics

Inference Performance

  • Inference Time: Total time for generation per category
  • Time Per Token: Normalized time accounting for different generation lengths
  • Inference Overhead: Percentage increase compared to base model

Memory Usage

  • Peak GPU Memory: Maximum GPU memory during benchmark
  • Peak RAM Memory: Maximum RAM usage
  • Memory Logs: Detailed tracking at each stage

Parameter Efficiency

  • Adapter Parameters: Number of parameters in the PEFT adapter
  • Parameter Ratio: Percentage of total model parameters that are in the adapter
  • Adapter Size: Memory footprint of the adapter in MB