File size: 20,106 Bytes
9c49c2c
88a1595
9c49c2c
88a1595
 
9c49c2c
 
 
 
823bd24
 
 
9c49c2c
823bd24
9c49c2c
88a1595
 
9c49c2c
 
 
88a1595
 
 
9c49c2c
 
823bd24
88a1595
823bd24
9c49c2c
 
 
 
823bd24
 
 
 
 
 
 
 
9c49c2c
 
823bd24
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823bd24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88a1595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823bd24
9c49c2c
 
 
 
823bd24
 
 
 
 
88a1595
823bd24
 
 
 
88a1595
823bd24
 
 
88a1595
823bd24
 
 
 
 
88a1595
 
 
 
 
823bd24
 
88a1595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823bd24
 
 
88a1595
823bd24
 
 
 
 
 
 
 
 
88a1595
 
823bd24
 
9c49c2c
 
 
88a1595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c49c2c
 
 
88a1595
9c49c2c
88a1595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88a1595
9c49c2c
 
 
 
88a1595
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88a1595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823bd24
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
823bd24
9c49c2c
 
 
 
 
 
823bd24
 
 
 
 
 
9c49c2c
 
823bd24
 
 
 
 
9c49c2c
 
 
 
88a1595
9c49c2c
 
 
 
 
 
 
 
88a1595
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88a1595
 
9c49c2c
 
 
 
823bd24
9c49c2c
 
 
 
 
 
88a1595
 
 
 
 
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import base64
import json
import os
import re
from typing import Optional, Dict

import pandas as pd
import requests
import whisper

from bs4 import BeautifulSoup
from datetime import datetime
from dotenv import find_dotenv, load_dotenv
from langchain.chains import RetrievalQA
from langchain.chat_models import init_chat_model
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
    UnstructuredPDFLoader, UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader, WebBaseLoader)
from langchain_community.tools import DuckDuckGoSearchResults, GoogleSearchResults
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
from langchain_tavily import TavilySearch
from markdownify import markdownify as md
from youtube_transcript_api import YouTubeTranscriptApi
from yt_dlp import YoutubeDL


UNWANTED_SECTIONS = {
    "references",
    "external links",
    "further reading",
    "see also",
    "notes",
}

@tool
def get_weather_info(location: str) -> str:
    """Fetches weather information for a given location.

    Usage:
    ```
    # Initialize the tool
    weather_info_tool = Tool(
        name="get_weather_info",
        func=get_weather_info,
        description="Fetches weather information for a given location.")
    ```
    """
    load_dotenv(find_dotenv())
    api_key = os.getenv("OPENWEATHERMAP_API_KEY")
    url = (
        f"https://api.openweathermap.org/data/2.5/"
        f"weather?q={location}&appid={api_key}&units=metric"
    )

    res = requests.get(url, timeout=15)
    data = res.json()
    humidity = data["main"]["humidity"]
    pressure = data["main"]["pressure"]
    wind = data["wind"]["speed"]
    description = data["weather"][0]["description"]
    temp = data["main"]["temp"]
    min_temp = data["main"]["temp_min"]
    max_temp = data["main"]["temp_max"]
    return (
        f"Weather in {location}: {description}, "
        f"Temperature: {temp}°C, Min: {min_temp}°C, Max: {max_temp}°C, "
        f"Humidity: {humidity}%, Pressure: {pressure} hPa, "
        f"Wind Speed: {wind} m/s"
    )


@tool
def add(a: int, b: int) -> int:
    """Adds two numbers together.

    Args:
        a (int): The first number.
        b (int): The second number.
    """
    return a + b


@tool
def get_sum(list_of_numbers: list[int]) -> int:
    """Sums a list of numbers.

    Args:
        list_of_numbers (list[int]): The list of numbers to sum.
    """
    return sum(list_of_numbers)


@tool
def subtract(a: int, b: int) -> int:
    """Subtracts the second number from the first.

    Args:
        a (int): The first number.
        b (int): The second number.
    """
    return a - b


@tool
def multiply(a: int, b: int) -> int:
    """Multiplies two numbers together.

    Args:
        a (int): The first number.
        b (int): The second number.
    """
    return a * b


@tool
def divide(a: int, b: int) -> float:
    """Divides the first number by the second.

    Args:
        a (int): The first number.
        b (int): The second number.
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def get_current_time_and_date() -> str:
    """Returns the current time and date in ISO format."""
    return datetime.now().isoformat()


@tool
def reverse_text(text: str) -> str:
    """Reverses the given text.

    Args:
        text (str): The text to reverse.
    """
    return text[::-1]


def build_retriever(text: str):
    """Builds a retriever from the given text.

    Args:
        text (str): The text to be used for retrieval.
    """
    splitter = RecursiveCharacterTextSplitter(
        separators=["\n### ", "\n## ", "\n# "],
        chunk_size=1000,
        chunk_overlap=200,
    )
    chunks = splitter.split_text(text)
    docs = [
        Document(page_content=chunk)
        for chunk in chunks
    ]
    hf_embed = HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-MiniLM-L6-v2"
    )
    index = FAISS.from_documents(docs, hf_embed)
    return index.as_retriever(search_kwargs={"k": 3})


def get_retrieval_qa(text: str):
    """Creates a RetrievalQA instance for the given text.
    Args:
        text (str): The text to be used for retrieval.
    """
    retriever = build_retriever(text)
    llm = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct")
    return RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True,
    )


def clean_html(html: str) -> str:
    soup = BeautifulSoup(html, "html.parser")

    # 1. Remove <script> & <style>
    for tag in soup(["script", "style"]):
        tag.decompose()

    # 2. Drop whole <section> blocks whose first heading is unwanted
    for sec in soup.find_all("section"):
        h = sec.find(["h1","h2","h3","h4","h5","h6"])
        if h and any(h.get_text(strip=True).lower().startswith(u) for u in UNWANTED_SECTIONS):
            sec.decompose()

    # 3. Additional filtering by CSS selector
    for selector in [".toc", ".navbox", ".vertical-navbox", ".hatnote", ".reflist", ".mw-references-wrap"]:
        for el in soup.select(selector):
            el.decompose()

    # 4. Isolate the main content container if present
    main = soup.find("div", class_="mw-parser-output")
    return str(main or soup)


def fetch_page_markdown(page_key: str, lang: str="en") -> str:
    """Fetches the page HTML and returns the <body> as Markdown.
    Args:
        page_key (str): The unique key of the Wikipedia page.
        lang (str): The language code for the Wikipedia edition to fetch (default: "en").
    """
    url = f"https://api.wikimedia.org/core/v1/wikipedia/{lang}/page/{page_key}/html"
    resp = requests.get(url, timeout=15)
    resp.raise_for_status()
    html = clean_html(resp.text)    # Optional, but recommended: clean the HTML to remove unwanted sections

    markdown = md(
        html,
        heading_style="ATX",
        bullets="*+-",
        table_infer_header=True,
        strip=['a', 'span']
    )
    return markdown


def get_wikipedia_article(query: str) -> Dict[str, str]:
    """Fetches a Wikipedia article for a given query and returns its content in Markdown format.

    Args:
        query (str): The search query.
    """
    headers = {
        'User-Agent': 'MyLLMAgent ([email protected])'
    }

    # Step 1: Search
    search_url = f"https://api.wikimedia.org/core/v1/wikipedia/en/search/page"
    search_params = {'q': query, 'limit': 1}
    search_response = requests.get(search_url, headers=headers, params=search_params, timeout=15)

    if search_response.status_code != 200:
        raise Exception(f"Search error: {search_response.status_code} - {search_response.text}")

    results = search_response.json().get("pages", [])
    if not results:
        raise Exception(f"No results found for query: {query}")

    page = results[0]
    page_key = page["key"]

    # Step 2: Get the wiki page, only keep relevant content and convert to Markdown
    markdown = fetch_page_markdown(page_key)
    return {
        "page_key": page_key,
        "markdown": markdown,
    }


def parse_sections(markdown_text: str) -> Dict[str, Dict]:
    """
    Parses markdown into a nested dict:
    { section_title: {
         "full": full_section_md,
         "subsections": { sub_title: sub_md, ... }
      }, ... }
    """
    # First split top-level sections
    top_pat = re.compile(r"^##\s+(.*)$", re.MULTILINE)
    top_matches = list(top_pat.finditer(markdown_text))
    sections: Dict[str, Dict] = {}
    for i, m in enumerate(top_matches):
        sec_title = m.group(1).strip()
        start = m.start()
        end = top_matches[i+1].start() if i+1 < len(top_matches) else len(markdown_text)
        sec_md = markdown_text[start:end].strip()

        # Now split subsections within this block
        sub_pat = re.compile(r"^###\s+(.*)$", re.MULTILINE)
        subs: Dict[str, str] = {}
        sub_matches = list(sub_pat.finditer(sec_md))
        for j, sm in enumerate(sub_matches):
            sub_title = sm.group(1).strip()
            sub_start = sm.start()
            sub_end = sub_matches[j+1].start() if j+1 < len(sub_matches) else len(sec_md)
            subs[sub_title] = sec_md[sub_start:sub_end].strip()

        sections[sec_title] = {"full": sec_md, "subsections": subs}
    return sections


@tool
def wiki_search_qa(query: str, question: str) -> str:
    """Searches Wikipedia for a specific article and answers a question based on its content.

    The function retrieves a Wikipedia article based on the provided query, converts it to Markdown,
    and uses a retrieval-based QA system to answer the specified question.

    Args:
        query (str): A concise topic name with optional keywords, ideally matching the relevant Wikipedia page title.
        question (str): The question to answer using the article.
    """
    article = get_wikipedia_article(query)
    markdown = article["markdown"]
    qa = get_retrieval_qa(markdown)
    return qa.invoke(question)


@tool
def wiki_search_article(query: str) -> str:
    """Search Wikipedia and return page_key plus a full table of contents (sections + subsections).

    Args:
        query (str): A concise topic name with optional keywords, ideally matching the relevant Wikipedia page title.
    """
    article = get_wikipedia_article(query)
    page_key = article["page_key"]
    markdown = article["markdown"]
    sections = parse_sections(markdown)
    toc = [
        {"section": sec, "subsections": list(info["subsections"].keys())}
        for sec, info in sections.items()
    ]
    return json.dumps({"page_key": page_key, "toc": toc})


@tool
def wiki_get_section(
    page_key: str, section: str, subsection: Optional[str] = None
) -> str:
    """
    Fetches the Markdown for a given top-level section or an optional subsection.

    Args:
        page_key: the article’s key (from wiki_search)
        section: one of the top-level headings (## ...)
        subsection: an optional subheading (### ...) under that section

    Returns:
        Markdown string of either the entire section or just the named subsection.
    """
    page_key = page_key.strip().replace(" ", "_")
    markdown = fetch_page_markdown(page_key)
    sections = parse_sections(markdown)

    sec_info = sections.get(section)
    if not sec_info:
        return f"Error: section '{section}' not found."

    if subsection:
        sub_md = sec_info["subsections"].get(subsection)
        if not sub_md:
            return f"Error: subsection '{subsection}' not found under '{section}'."
        return sub_md

    # no subsection requested → return the full section (with all its subsections)
    return sec_info["full"]


@tool
def web_search(query: str, max_results: int = 5) -> str:
    """Searches the web for a given query and returns relevant results.

    Args:
        query (str): The search query.
        max_results (int): The maximum number of results to return. Default is 5.
    """
    if os.getenv("SERPER_API_KEY"):
        # Preferred choice: Use Google Serper API for search
        search_tool = GoogleSerperAPIWrapper()
        results_dict = search_tool.results(query)
        results = "\n".join(
            [
                f"Title: {result['title']}\n"
                f"URL: {result['link']}\n"
                f"Content: {result['snippet']}\n"
                for result in results_dict["organic"][:max_results]
            ]
        )
    elif os.getenv("TAVILY_API_KEY"):
        search_tool = TavilySearch(
            max_results=max_results,
            topic="general",
        )
        results_dict = search_tool.invoke(query)
        results = "\n".join(
            [
                f"Title: {result['title']}\n"
                f"URL: {result['url']}\n"
                f"Content: {result['content']}\n"
                for result in results_dict["results"]
            ]
        )
    else:
        search_tool = DuckDuckGoSearchResults()
        results = search_tool.invoke(query)
    if results:
        return results
    else:
        return "No results found."


@tool
def visit_website(url: str) -> str:
    """Visits a website and returns the content.

    Args:
        url (str): The URL of the website to visit.
    """
    loader = WebBaseLoader(url)
    documents = loader.load()
    if documents:
        return documents[0].page_content
    else:
        return "No content found."


@tool
def get_youtube_video_info(video_url: str) -> str:
    """Fetches information about a YouTube video and its transcript if it is available.

    Args:
        video_url (str): The URL of the YouTube video.
    """
    # Get information about the video using yt-dlp
    try:
        ydl_opts = {
            "quiet": True,
            "skip_download": True,
        }
        with YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(video_url, download=False)
        video_info = {
            "Title": info.get("title"),
            "Description": info.get("description"),
            "Uploader": info.get("uploader"),
            "Upload date": info.get("upload_date"),
            "Duration": info.get("duration"),
            "View count": info.get("view_count"),
            "Like count": info.get("like_count"),
        }
        video_info_filtered = {k: v for k, v in video_info.items() if v is not None}
        video_info_str = "\n".join(
            [f"{k}: {v}" for k, v in video_info_filtered.items()]
        )
    except Exception as e:
        print(f"Error fetching video info: {e}")
        video_info_str = ""
    try:
        video_id = video_url.split("v=")[-1]
        ytt_api = YouTubeTranscriptApi()
        # We could add the option to load the transcript in a specific language
        transcript = ytt_api.fetch(video_id)
        sentences = []
        for t in transcript:
            start = t.start
            end = start + t.duration
            sentences.append(f"{start:.2f} - {end:.2f}: {t.text}")
        transcript_with_timestamps = "\n".join(sentences)
    except Exception as e:
        print(f"Error fetching transcript: {e}")
        transcript_with_timestamps = ""

    # Check if neither piece of data was fetched
    if not video_info_str and not transcript_with_timestamps:
        return "Could not fetch video information or transcript."

    # Use fallbacks for whichever is missing
    info = video_info_str or "Video information not available."
    transcript_section = (
        f"\n\nTranscript:\n{transcript_with_timestamps}"
        if transcript_with_timestamps
        else "\n\nTranscript not available."
    )
    return f"{info}{transcript_section}"


def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


@tool
def ask_about_image(image_path: str, question: str) -> str:
    """Performs vision-based question answering on an image.

    Args:
        image_path (str): The path to the image file.
        question (str): Your question about the image, as a natural language sentence. Provide as much context as possible.
    """
    load_dotenv(find_dotenv())
    llm = init_chat_model("groq:meta-llama/llama-4-maverick-17b-128e-instruct")
    prompt = ChatPromptTemplate(
        [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Please write a concise caption for the image that helps answer the following question: {question}",
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "data:image/{image_format};base64,{base64_image}",
                        },
                    },
                ],
            }
        ]
    )
    file_suffix = os.path.splitext(image_path)[-1]
    if file_suffix == ".png":
        image_format = "png"
    else:
        # We could handle other formats explicitly, but for simplicity we assume JPEG
        image_format = "jpeg"
    chain = prompt | llm
    response = chain.invoke(
        {
            "question": question,
            "base64_image": encode_image(image_path),
            "image_format": image_format,
        }
    )
    return response.text()


@tool
def transcribe_audio(audio_path: str) -> str:
    """Transcribes audio to text.

    Args:
        audio_path (str): The path to the audio file.
    """
    model = whisper.load_model("base")
    result = model.transcribe(audio_path)
    text = result.get("text")
    return text


def get_table_description(table: pd.DataFrame) -> str:
    """Generates a description of the table. If applicable, calculates sum and mean of numeric
    columns.

    Args:
        table (pd.DataFrame): The table to describe.
    """
    if table.empty:
        return "The table is empty."
    description = []
    total_sum = 0
    for column in table.select_dtypes(include=[int, float]).columns:
        column_sum = table[column].sum()
        column_mean = table[column].mean()
        description.append(
            f"Column '{column}': Sum = {column_sum}, Mean = {column_mean:.2f}"
        )
        total_sum += column_sum
    if total_sum:
        description.append(f"Total Sum of all numeric columns: {total_sum}")
    if description:
        description = "\n".join(description)
    else:
        description = "No numeric columns to summarize."
    # Add the number of rows and columns
    description += f"\n\nTable has {table.shape[0]} rows and {table.shape[1]} columns."
    df_as_markdown = table.to_markdown()
    description += f"\n\nTable:\n{df_as_markdown}"
    return description


@tool
def inspect_file_as_text(file_path: str) -> str:
    """This tool reads a file as markdown text. It handles [".csv", ".xlsx", ".pptx", ".pdf", ".docx"],
    and all other types of text files. IT DOES NOT HANDLE IMAGES.

    Args:
        file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool.
    """
    # TODO we could also pass the file content to a retrieval chain
    try:
        suffix = os.path.splitext(file_path)[-1]
        if suffix in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]:
            raise Exception(
                "Cannot use inspect_file_as_text tool with images: use `vision_qa` tool instead!"
            )
        elif suffix in [".mp3", ".wav", ".flac", ".m4a"]:
            raise Exception(
                "Cannot use inspect_file_as_text tool with audio files: use `transcribe_audio` tool instead!"
            )
        elif suffix in [".csv", ".tsv", ".xlsx"]:
            if suffix == ".csv":
                df = pd.read_csv(file_path)
            elif suffix == ".tsv":
                df = pd.read_csv(file_path, sep="\t")
            elif suffix == ".xlsx":
                df = pd.read_excel(file_path)
            else:
                raise Exception(f"Unsupported file type: {suffix}")
            table_description = get_table_description(df)
            return table_description
        elif suffix == ".pptx":
            doc = UnstructuredPowerPointLoader(file_path)
            return doc.load()[0].page_content
        elif suffix == ".pdf":
            doc = UnstructuredPDFLoader(file_path)
            return doc.load()[0].page_content
        elif suffix == ".docx":
            doc = UnstructuredWordDocumentLoader(file_path)
            return doc.load()[0].page_content
        else:
            # All other text files
            with open(file_path, "r", encoding="utf-8") as file:
                content = file.read()
            return content
    except Exception as e:
        return f"Error file: {e}"