phucdev's picture
Implement basic agent and tools to solve GAIA questions
9c49c2c
raw
history blame
10.8 kB
import base64
import os
from datetime import datetime
import pandas as pd
import requests
import whisper
import wikipedia
from dotenv import find_dotenv, load_dotenv
from langchain.chat_models import init_chat_model
from langchain_community.document_loaders import (
UnstructuredPDFLoader, UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader, WebBaseLoader)
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from youtube_transcript_api import YouTubeTranscriptApi
from yt_dlp import YoutubeDL
@tool
def get_weather_info(location: str) -> str:
"""Fetches dummy weather information for a given location.
Usage:
```
# Initialize the tool
weather_info_tool = Tool(
name="get_weather_info",
func=get_weather_info,
description="Fetches weather information for a given location.")
```
"""
load_dotenv(find_dotenv())
api_key = os.getenv("OPENWEATHERMAP_API_KEY")
url = (
f"https://api.openweathermap.org/data/2.5/"
f"weather?q={location}&appid={api_key}&units=metric"
)
res = requests.get(url, timeout=15)
data = res.json()
humidity = data["main"]["humidity"]
pressure = data["main"]["pressure"]
wind = data["wind"]["speed"]
description = data["weather"][0]["description"]
temp = data["main"]["temp"]
min_temp = data["main"]["temp_min"]
max_temp = data["main"]["temp_max"]
return (
f"Weather in {location}: {description}, "
f"Temperature: {temp}°C, Min: {min_temp}°C, Max: {max_temp}°C, "
f"Humidity: {humidity}%, Pressure: {pressure} hPa, "
f"Wind Speed: {wind} m/s"
)
@tool
def add(a: int, b: int) -> int:
"""Adds two numbers together.
Args:
a (int): The first number.
b (int): The second number.
"""
return a + b
@tool
def get_sum(list_of_numbers: list[int]) -> int:
"""Sums a list of numbers.
Args:
list_of_numbers (list[int]): The list of numbers to sum.
"""
return sum(list_of_numbers)
@tool
def subtract(a: int, b: int) -> int:
"""Subtracts the second number from the first.
Args:
a (int): The first number.
b (int): The second number.
"""
return a - b
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies two numbers together.
Args:
a (int): The first number.
b (int): The second number.
"""
return a * b
@tool
def divide(a: int, b: int) -> float:
"""Divides the first number by the second.
Args:
a (int): The first number.
b (int): The second number.
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def get_current_time_and_date() -> str:
"""Returns the current time and date in ISO format."""
return datetime.now().isoformat()
@tool
def reverse_text(text: str) -> str:
"""Reverses the given text.
Args:
text (str): The text to reverse.
"""
return text[::-1]
@tool
def wiki_search(query: str) -> str:
"""Searches Wikipedia for a given query and returns the summary.
Args:
query (str): The search query.
"""
search_results = wikipedia.search(query)
if not search_results:
return "No results found."
page_title = search_results[0]
summary = wikipedia.summary(page_title)
# Alternatively wikipedia.page(page_title).content[:max_length]
return f"Title: {page_title}\n\nSummary: {summary}"
@tool
def web_search(query: str) -> str:
"""Searches the web for a given query and returns the first result.
Args:
query (str): The search query.
"""
search_tool = DuckDuckGoSearchRun()
results = search_tool.invoke(query)
if results:
return results
else:
return "No results found."
@tool
def visit_website(url: str) -> str:
"""Visits a website and returns the content.
Args:
url (str): The URL of the website to visit.
"""
loader = WebBaseLoader(url)
documents = loader.load()
if documents:
return documents[0].page_content
else:
return "No content found."
@tool
def get_youtube_transcript(video_url: str, return_timestamps: bool = False) -> str:
"""Fetches the transcript of a YouTube video.
Args:
video_url (str): The URL of the YouTube video.
return_timestamps (bool): If True, returns timestamps with the transcript. Otherwise, returns only the text.
"""
try:
video_id = video_url.split("v=")[-1]
transcript = YouTubeTranscriptApi.get_transcript(video_id)
if return_timestamps:
sentences = []
for t in transcript:
start = t["start"]
end = start + t["duration"]
sentences.append(f"{start:.2f} - {end:.2f}: {t['text']}")
return "\n".join(sentences)
else:
return "\n".join([t["text"] for t in transcript])
except Exception as e:
return f"Error fetching transcript: {e}"
@tool
def get_youtube_video_info(video_url: str) -> str:
"""Fetches information about a YouTube video.
Args:
video_url (str): The URL of the YouTube video.
"""
try:
ydl_opts = {
"quiet": True,
"skip_download": True,
}
with YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(video_url, download=False)
video_info = {
"Title": info.get("title"),
"Description": info.get("description"),
"Uploader": info.get("uploader"),
"Upload date": info.get("upload_date"),
"Duration": info.get("duration"),
"View count": info.get("view_count"),
"Like count": info.get("like_count"),
}
video_info_filtered = {k: v for k, v in video_info.items() if v is not None}
video_info_str = "\n".join(
[f"{k}: {v}" for k, v in video_info_filtered.items()]
)
return video_info_str
except Exception as e:
return f"Error fetching video info: {e}"
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
@tool
def ask_about_image(image_path: str, question: str) -> str:
"""Performs vision-based question answering on an image.
Args:
image_path (str): The path to the image file.
question (str): Your question about the image, as a natural language sentence. Provide as much context as possible.
"""
load_dotenv(find_dotenv())
llm = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct")
prompt = ChatPromptTemplate(
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Please write a concise caption for the image that helps answer the following question: {question}",
},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64,{base64_image}",
},
},
],
}
]
)
chain = prompt | llm
response = chain.invoke(
{"question": question, "base64_image": encode_image(image_path)}
)
return response.text()
def transcribe_audio(audio_path: str) -> str:
"""Transcribes audio to text.
Args:
audio_path (str): The path to the audio file.
"""
model = whisper.load_model("base")
result = model.transcribe(audio_path)
text = result.text
return text
def get_table_description(table: pd.DataFrame) -> str:
"""Generates a description of the table. If applicable, calculates sum and mean of numeric
columns.
Args:
table (pd.DataFrame): The table to describe.
"""
if table.empty:
return "The table is empty."
description = []
total_sum = 0
for column in table.select_dtypes(include=[int, float]).columns:
column_sum = table[column].sum()
column_mean = table[column].mean()
description.append(
f"Column '{column}': Sum = {column_sum}, Mean = {column_mean:.2f}"
)
total_sum += column_sum
if total_sum:
description.append(f"Total Sum of all numeric columns: {total_sum}")
if description:
description = "\n".join(description)
else:
description = "No numeric columns to summarize."
# Add the number of rows and columns
description += f"\n\nTable has {table.shape[0]} rows and {table.shape[1]} columns."
df_as_markdown = table.to_markdown()
description += f"\n\nTable:\n{df_as_markdown}"
return description
@tool
def inspect_file_as_text(file_path: str) -> str:
"""This tool reads a file as markdown text. It handles [".csv", ".xlsx", ".pptx", ".wav",
".mp3", ".m4a", ".flac", ".pdf", ".docx"], and all other types of text files. IT DOES NOT
HANDLE IMAGES.
Args:
file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool.
"""
try:
suffix = os.path.splitext(file_path)[-1]
if suffix in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]:
raise Exception(
"Cannot use inspect_file_as_text tool with images: use `vision_qa` tool instead!"
)
if suffix in [".csv", ".tsv", ".xlsx"]:
if suffix == ".csv":
df = pd.read_csv(file_path)
elif suffix == ".tsv":
df = pd.read_csv(file_path, sep="\t")
elif suffix == ".xlsx":
df = pd.read_excel(file_path)
else:
raise Exception(f"Unsupported file type: {suffix}")
table_description = get_table_description(df)
return table_description
elif suffix == ".pptx":
doc = UnstructuredPowerPointLoader(file_path)
return doc.load()[0].page_content
elif suffix == ".pdf":
doc = UnstructuredPDFLoader(file_path)
return doc.load()[0].page_content
elif suffix == ".docx":
doc = UnstructuredWordDocumentLoader(file_path)
return doc.load()[0].page_content
elif suffix in [".wav", ".mp3", ".m4a", ".flac"]:
return transcribe_audio(file_path)
else:
# All other text files
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except Exception as e:
return f"Error file: {e}"