File size: 10,047 Bytes
5c263d5
 
 
 
 
 
 
 
 
 
 
 
 
fef773e
5c263d5
 
 
fef773e
5c263d5
 
 
fef773e
5c263d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef773e
 
 
 
 
 
5c263d5
 
 
fef773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c263d5
 
 
fef773e
 
 
 
 
 
 
 
 
5c263d5
 
fef773e
 
 
 
 
 
 
 
5c263d5
fef773e
5c263d5
 
 
 
 
 
 
fef773e
 
5c263d5
 
 
 
 
 
 
 
 
 
fef773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c263d5
 
 
 
 
 
 
 
 
 
 
fef773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# -------------------------------------------------------------------
# This source file is available under the terms of the
# Pimcore Open Core License (POCL)
# Full copyright and license information is available in
# LICENSE.md which is distributed with this source code.
#
#  @copyright  Copyright (c) Pimcore GmbH (https://www.pimcore.com)
#  @license    Pimcore Open Core License (POCL)
# -------------------------------------------------------------------

import os
import torch

from fastapi import FastAPI, Path, Depends, HTTPException, UploadFile, Form, File, status, Request
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
from typing import Annotated
import json

import logging
import sys
import base64


from transformers import pipeline

app = FastAPI(
    title="Pimcore Local Inference Service",
    description="This services allows HF inference provider compatible inference to models which are not available at HF inference providers.",
    version="1.0.0"
)

logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)


class StreamToLogger(object):
    def __init__(self, logger, log_level):
        self.logger = logger
        self.log_level = log_level
        self.linebuf = ''

    def write(self, buf):
        for line in buf.rstrip().splitlines():
            self.logger.log(self.log_level, line.rstrip())

    def flush(self):
        pass

sys.stdout = StreamToLogger(logger, logging.INFO)
sys.stderr = StreamToLogger(logger, logging.ERROR)



class ResponseModel(BaseModel):
    """ Default response model for endpoints. """
    message: str
    success: bool = True


@app.get("/gpu_check")
async def gpu_check():
    """ Check if a GPU is available """

    gpu = 'GPU not available'
    if torch.cuda.is_available():
        gpu = 'GPU is available'
        print("GPU is available")
    else:
        print("GPU is not available")

    return {'success': True, 'gpu': gpu}


from typing import Optional



# =========================
# Translation Task
# =========================

class TranslationRequest(BaseModel):
    inputs: str
    parameters: Optional[dict] = None
    options: Optional[dict] = None

async def get_translation_request(
    request: Request
)  -> TranslationRequest: 
    content_type = request.headers.get("content-type", "")
    if content_type.startswith("application/json"):
        data = await request.json()
        return TranslationRequest(**data)
    if content_type.startswith("application/x-www-form-urlencoded"):
        raw = await request.body()
        try:
            data = json.loads(raw)
            return TranslationRequest(**data)
        except Exception:
            try:
                data = json.loads(raw.decode("utf-8"))
                return TranslationRequest(**data)
            except Exception:
                raise HTTPException(status_code=400, detail="Invalid request body")
    raise HTTPException(status_code=400, detail="Unsupported content type")



@app.post(
    "/translation/{model_name:path}/", 
    openapi_extra={
        "requestBody": {
            "content": {
                "application/json": {
                    "example": {
                        "inputs": "Hello, world! foo bar",
                        "parameters": {"repetition_penalty": 1.6}
                    }
                }
            }
        }
    }        
)
async def translate(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the translation model (e.g. Helsinki-NLP/opus-mt-en-de)",
        example="Helsinki-NLP/opus-mt-en-de"
    )
    ):
    """
    Execute translation tasks.

    Returns:
        list: The translation result(s) as returned by the pipeline.
    """

    translationRequest: TranslationRequest = await get_translation_request(request)

    try:
        pipe = pipeline("translation", model=model_name)
    except Exception as e:
        logger.error(f"Failed to load model '{model_name}': {str(e)}")
        raise HTTPException(
            status_code=404,
            detail=f"Model '{model_name}' could not be loaded: {str(e)}"
        )

    try:       
        result = pipe(translationRequest.inputs, **(translationRequest.parameters or {}))
    except Exception as e:
        logger.error(f"Inference failed for model '{model_name}': {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Inference failed: {str(e)}"
        )

    return result


# =========================
# Zero-Shot Image Classification Task
# =========================


class ZeroShotImageClassificationRequest(BaseModel):
    inputs: str
    parameters: Optional[dict] = None

async def get_zero_shot_image_classification_request(
    request: Request
)  -> ZeroShotImageClassificationRequest: 
    content_type = request.headers.get("content-type", "")
    if content_type.startswith("application/json"):
        data = await request.json()
        return ZeroShotImageClassificationRequest(**data)
    if content_type.startswith("application/x-www-form-urlencoded"):
        raw = await request.body()
        try:
            data = json.loads(raw)
            return ZeroShotImageClassificationRequest(**data)
        except Exception:
            try:
                data = json.loads(raw.decode("utf-8"))
                return ZeroShotImageClassificationRequest(**data)
            except Exception:
                raise HTTPException(status_code=400, detail="Invalid request body")
    raise HTTPException(status_code=400, detail="Unsupported content type")



@app.post(
    "/zero-shot-image-classification/{model_name:path}/",
    openapi_extra={
        "requestBody": {
            "content": {
                "application/json": {
                    "example": {
                        "inputs": "base64_encoded_image_string",
                        "parameters": {"candidate_labels": "green, yellow, blue, white, silver"}
                    }
                }
            }
        }        
    }
)
async def zero_shot_image_classification(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the zero-shot classification model (e.g., openai/clip-vit-large-patch14-336)",
        example="openai/clip-vit-large-patch14-336"
    )
    ):
    """
    Execute zero-shot image classification tasks.

    Returns:
        list: The classification result(s) as returned by the pipeline.
    """

    zeroShotRequest: ZeroShotImageClassificationRequest = await get_zero_shot_image_classification_request(request)

    try:
        pipe = pipeline("zero-shot-image-classification", model=model_name)
    except Exception as e:
        logger.error(f"Failed to load model '{model_name}': {str(e)}")
        raise HTTPException(
            status_code=404,
            detail=f"Model '{model_name}' could not be loaded: {str(e)}"
        )

    try:       
        candidate_labels = []
        if zeroShotRequest.parameters:
            candidate_labels = zeroShotRequest.parameters.get('candidate_labels', [])
            if isinstance(candidate_labels, str):
                candidate_labels = [label.strip() for label in candidate_labels.split(',')]
        result = pipe(zeroShotRequest.inputs, candidate_labels=candidate_labels)
    except Exception as e:
        logger.error(f"Inference failed for model '{model_name}': {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Inference failed: {str(e)}"
        )

    return result



# =========================
# Image to Text Task
# =========================


async def get_encoded_image(
    request: Request
)  -> str: 
    content_type = request.headers.get("content-type", "")
    if content_type.startswith("multipart/form-data"):
        form = await request.form()
        image = form.get("image")
        if image:
            image_bytes = await image.read()
            return base64.b64encode(image_bytes).decode("utf-8")
    if content_type.startswith("image/"):
        image_bytes = await request.body()
        return base64.b64encode(image_bytes).decode("utf-8")

    raise HTTPException(status_code=400, detail="Unsupported content type")



@app.post(
    "/image-to-text/{model_name:path}/",
    openapi_extra={
        "requestBody": {
            "content": {
                "multipart/form-data": {
                    "schema": {
                        "type": "object",
                        "properties": {
                            "image": {
                                "type": "string",
                                "format": "binary",
                                "description": "Image file to upload"
                            }
                        },
                        "required": ["image"]
                    }
                }
            }
        }
    }
)
async def image_to_text(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the image-to-text (e.g., Salesforce/blip-image-captioning-base)",
        example="Salesforce/blip-image-captioning-base"
    )
    ):
    """
    Execute image-to-text tasks.

    Returns:
        list: The generated text as returned by the pipeline.
    """

    encoded_image = await get_encoded_image(request)

    try:
        pipe = pipeline("image-to-text", model=model_name, use_fast=True)
    except Exception as e:
        logger.error(f"Failed to load model '{model_name}': {str(e)}")
        raise HTTPException(
            status_code=404,
            detail=f"Model '{model_name}' could not be loaded: {str(e)}"
        )

    try:       
        result = pipe(encoded_image)
    except Exception as e:
        logger.error(f"Inference failed for model '{model_name}': {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Inference failed: {str(e)}"
        )

    return result