|
import torch |
|
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel |
|
|
|
from PIL import Image |
|
from torchvision import transforms as tfms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer, logging |
|
import os |
|
import torch.nn.functional as F |
|
import random |
|
|
|
style_guide = [ |
|
('Oil Painting Style', 'oilstyle_learned_embeds.bin'), |
|
('Matrix Style', 'matrix_learned_embeds.bin'), |
|
('Stripe Style', 'stripe_learned_embeds.bin'), |
|
('Dreamy Painting Style', 'dreamypainting_learned_embeds.bin'), |
|
('Polygon HD Style', 'lowpolyhd_learned_embeds.bin') |
|
] |
|
|
|
IMAGE_SIZE = 224 |
|
|
|
|
|
def set_timesteps(scheduler, num_inference_steps): |
|
scheduler.set_timesteps(num_inference_steps) |
|
scheduler.timesteps = scheduler.timesteps.to( |
|
torch.float32) |
|
|
|
|
|
def pil_to_latent(input_im): |
|
|
|
with torch.no_grad(): |
|
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device) * 2 - 1) |
|
return 0.18215 * latent.latent_dist.sample() |
|
|
|
|
|
def latents_to_pil(latents): |
|
|
|
latents = (1 / 0.18215) * latents |
|
with torch.no_grad(): |
|
image = vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
images = (image * 255).round().astype("uint8") |
|
pil_images = [Image.fromarray(image) for image in images] |
|
return pil_images |
|
|
|
|
|
def build_causal_attention_mask(bsz, seq_len, dtype): |
|
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype) |
|
mask = torch.triu(mask, diagonal=1) |
|
return mask.unsqueeze(0).expand(bsz, -1, -1) |
|
|
|
|
|
def get_output_embeds(input_embeddings): |
|
|
|
bsz, seq_len = input_embeddings.shape[:2] |
|
|
|
|
|
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) |
|
|
|
|
|
|
|
encoder_outputs = text_encoder.text_model.encoder( |
|
inputs_embeds=input_embeddings, |
|
attention_mask=None, |
|
causal_attention_mask=causal_attention_mask.to(torch_device), |
|
output_attentions=None, |
|
output_hidden_states=True, |
|
return_dict=None, |
|
) |
|
|
|
|
|
output = encoder_outputs[0] |
|
|
|
|
|
output = text_encoder.text_model.final_layer_norm(output) |
|
|
|
|
|
return output |
|
|
|
|
|
def generate_with_embs(text_embeddings, add_guidance_loss=None, add_guidance_loss_scale=200): |
|
height = IMAGE_SIZE |
|
width = IMAGE_SIZE |
|
num_inference_steps = 30 |
|
guidance_scale = 7.5 |
|
generator = torch.manual_seed(random.randint(1, 10000)) |
|
batch_size = 1 |
|
|
|
max_length = text_embeddings.shape[1] |
|
uncond_input = tokenizer( |
|
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" |
|
) |
|
with torch.no_grad(): |
|
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] |
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
set_timesteps(scheduler, num_inference_steps) |
|
|
|
|
|
latents = torch.randn( |
|
(batch_size, unet.in_channels, height // 8, width // 8), |
|
generator=generator, |
|
) |
|
latents = latents.to(torch_device) |
|
latents = latents * scheduler.init_noise_sigma |
|
|
|
|
|
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) |
|
sigma = scheduler.sigmas[i] |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
with torch.no_grad(): |
|
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] |
|
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if add_guidance_loss: |
|
|
|
if i % 5 == 0: |
|
|
|
latents = latents.detach().requires_grad_() |
|
|
|
|
|
latents_x0 = latents - sigma * noise_pred |
|
|
|
|
|
|
|
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 |
|
|
|
|
|
loss = add_guidance_loss(denoised_images) * add_guidance_loss_scale |
|
|
|
|
|
if i % 10 == 0: |
|
print(i, 'loss:', loss.item()) |
|
|
|
|
|
cond_grad = torch.autograd.grad(loss, latents)[0] |
|
|
|
|
|
latents = latents.detach() - cond_grad * sigma ** 2 |
|
|
|
latents = scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
return latents_to_pil(latents)[0] |
|
|
|
|
|
def sharpness_loss(images): |
|
"""Encourages sharp edges by penalizing blurriness in generated images.""" |
|
grad_x = torch.abs(images[:, :, :-1, :] - images[:, :, 1:, :]) |
|
grad_y = torch.abs(images[:, :, :, :-1] - images[:, :, :, 1:]) |
|
|
|
|
|
grad_x = F.pad(grad_x, (0, 0, 0, 1)) |
|
grad_y = F.pad(grad_y, (0, 1, 0, 0)) |
|
|
|
sharpness = torch.mean(grad_x + grad_y) |
|
return -sharpness |
|
|
|
|
|
def styled_images(prompt, style_embed): |
|
|
|
token_emb_layer = text_encoder.text_model.embeddings.token_embedding |
|
|
|
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding |
|
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] |
|
position_embeddings = pos_emb_layer(position_ids) |
|
|
|
|
|
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, |
|
return_tensors="pt") |
|
input_ids = text_input.input_ids.to(torch_device) |
|
|
|
|
|
token_embeddings = token_emb_layer(input_ids) |
|
|
|
if not style_embed: |
|
input_embeddings = token_embeddings + position_embeddings |
|
|
|
|
|
modified_output_embeddings = get_output_embeds(input_embeddings) |
|
|
|
return generate_with_embs(modified_output_embeddings, add_guidance_loss=sharpness_loss, add_guidance_loss_scale=200) |
|
|
|
else: |
|
style_token_embedding = style_embed.to(torch_device) |
|
|
|
|
|
|
|
|
|
|
|
token_embeddings[0, torch.where(input_ids[0] == 22373)] = style_token_embedding.to(torch_device) |
|
|
|
input_embeddings = token_embeddings + position_embeddings |
|
|
|
|
|
modified_output_embeddings = get_output_embeds(input_embeddings) |
|
|
|
|
|
|
|
|
|
return generate_with_embs(modified_output_embeddings) |
|
|
|
|
|
def load_learned_embeds(prompt, style): |
|
|
|
path = None |
|
for s in style_guide: |
|
if s[0] == style: |
|
path = './learned-embeds/' + s[1] |
|
break |
|
|
|
if not path: |
|
return styled_images(prompt, None) |
|
|
|
|
|
|
|
|
|
learned_embeds = torch.load(path) |
|
for k, v in learned_embeds.items(): |
|
print(k, v.shape) |
|
if v.shape[0] == 768: |
|
image = styled_images(prompt, v) |
|
return image |
|
|
|
|
|
|
|
|
|
|
|
torch.manual_seed(10) |
|
|
|
|
|
|
|
logging.set_verbosity_error() |
|
|
|
|
|
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" |
|
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" |
|
|
|
|
|
|
|
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") |
|
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") |
|
|
|
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) |
|
|
|
|
|
vae = vae.to(torch_device) |
|
text_encoder = text_encoder.to(torch_device) |
|
unet = unet.to(torch_device) |
|
|
|
|
|
|