piyushgrover's picture
Upload 2 files
6374a3c verified
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from PIL import Image
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
import torch.nn.functional as F
import random
style_guide = [
('Oil Painting Style', 'oilstyle_learned_embeds.bin'),
('Matrix Style', 'matrix_learned_embeds.bin'),
('Stripe Style', 'stripe_learned_embeds.bin'),
('Dreamy Painting Style', 'dreamypainting_learned_embeds.bin'),
('Polygon HD Style', 'lowpolyhd_learned_embeds.bin')
]
IMAGE_SIZE = 224
# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(
torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device) * 2 - 1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def build_causal_attention_mask(bsz, seq_len, dtype):
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype)
mask = torch.triu(mask, diagonal=1) # Upper triangular matrix with -inf
return mask.unsqueeze(0).expand(bsz, -1, -1) # Expand for batch size
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
# causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Call it in your function
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
def generate_with_embs(text_embeddings, add_guidance_loss=None, add_guidance_loss_scale=200):
height = IMAGE_SIZE # default height of Stable Diffusion
width = IMAGE_SIZE # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(random.randint(1, 10000)) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_embeddings.shape[1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if add_guidance_loss:
#### ADDITIONAL GUIDANCE ###
if i % 5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = add_guidance_loss(denoised_images) * add_guidance_loss_scale
# Occasionally print it out
if i % 10 == 0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma ** 2
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def sharpness_loss(images):
"""Encourages sharp edges by penalizing blurriness in generated images."""
grad_x = torch.abs(images[:, :, :-1, :] - images[:, :, 1:, :])
grad_y = torch.abs(images[:, :, :, :-1] - images[:, :, :, 1:])
# Pad to maintain original shape
grad_x = F.pad(grad_x, (0, 0, 0, 1)) # Pad height dimension
grad_y = F.pad(grad_y, (0, 1, 0, 0)) # Pad width dimension
sharpness = torch.mean(grad_x + grad_y)
return -sharpness # Negative sign encourages sharper images
def styled_images(prompt, style_embed):
# Access the embedding layer
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True,
return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
if not style_embed:
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
return generate_with_embs(modified_output_embeddings, add_guidance_loss=sharpness_loss, add_guidance_loss_scale=200)
else:
style_token_embedding = style_embed.to(torch_device)
# The new embedding. In this case just the input embedding of token 2368...
# replacement_token_embedding = text_encoder.get_input_embeddings()(torch.tensor(2368, device=torch_device))
# Insert this into the token embeddings (
token_embeddings[0, torch.where(input_ids[0] == 22373)] = style_token_embedding.to(torch_device)
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# print(modified_output_embeddings.shape)
#modified_output_embeddings
return generate_with_embs(modified_output_embeddings)
def load_learned_embeds(prompt, style):
path = None
for s in style_guide:
if s[0] == style:
path = './learned-embeds/' + s[1]
break
if not path:
return styled_images(prompt, None)
#pathlist = Path('./learned-embeds/').glob('*_learned_embeds.bin')
#learned_embeds = []
learned_embeds = torch.load(path)
for k, v in learned_embeds.items():
print(k, v.shape)
if v.shape[0] == 768:
image = styled_images(prompt, v)
return image
######
torch.manual_seed(10)
#if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()
# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)